Resonant MEMS : fundamentals, implementation and application /

Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of thei...

Full description

Saved in:
Bibliographic Details
Other Authors: Brand, Oliver, 1964- (Editor), Dufour, Isabelle (Electrical engineer) (Editor), Heinrich, Stephen M. (Editor), Josse, Fabien (Editor)
Format: Electronic eBook
Language:English
Published: Wiesbaden : Wiley-VCH Verlag & Co. KGaA, [2015]
Series:Advanced micro & nanosystems.
Subjects:
Online Access:CONNECT
Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Series editor's preface
  • Preface
  • About the Volume Editors
  • List of Contributors
  • Part I: Fundamentals
  • Chapter 1 Fundamental Theory of Resonant MEMS Devices
  • 1.1 Introduction
  • 1.2 Nomenclature
  • 1.3 Single-Degree-of-Freedom (SDOF) Systems
  • 1.3.1 Free Vibration
  • 1.3.2 Harmonically Forced Vibration
  • 1.3.3 Contributions to Quality Factor from Multiple Sources
  • 1.4 Continuous Systems Modeling: Microcantilever Beam Example
  • 1.4.1 Modeling Assumptions
  • 1.4.2 Boundary Value Problem for a Vibrating Microcantilever
  • 1.4.3 Free-Vibration Response of Microcantilever
  • 1.4.4 Steady-State Response of a Harmonically Excited Microcantilever
  • 1.5 Formulas for Undamped Natural Frequencies
  • 1.5.1 Simple Deformations (Axial, Bending, Twisting) of 1D Structural Members: Cantilevers and Doubly Clamped Members (Bridges)
  • 1.5.1.1 Axial Vibrations (Along x-Axis)
  • 1.5.1.2 Torsional Vibrations (Based on h≪b) (Twist About x-Axis)
  • 1.5.1.3 Flexural (Bending) Vibrations
  • 1.5.2 Transverse Deflection of 2D Structures: Circular and Square Plates with Free and Clamped Supports
  • 1.5.3 Transverse Deflection of 1D Membrane Structures (Strings)
  • 1.5.4 Transverse Deflection of 2D Membrane Structures: Circular and Square Membranes under Uniform Tension and Supported along Periphery
  • 1.5.5 In-Plane Deformation of Slender Circular Rings
  • 1.5.5.1 Extensional Modes
  • 1.5.5.2 In-Plane Bending Modes
  • 1.6 Summary
  • Acknowledgment
  • References
  • Chapter 2 Frequency Response of Cantilever Beams Immersed in Viscous Fluids
  • 2.1 Introduction
  • 2.2 Low Order Modes
  • 2.2.1 Flexural Oscillation
  • 2.2.2 Torsional Oscillation
  • 2.2.3 In-Plane Flexural Oscillation
  • 2.2.4 Extensional Oscillation
  • 2.3 Arbitrary Mode Order
  • 2.3.1 Incompressible Flows.
  • 2.3.2 Compressible Flows
  • 2.3.2.1 Scaling Analysis
  • 2.3.2.2 Numerical Results
  • References
  • Chapter 3 Damping in Resonant MEMS
  • 3.1 Introduction
  • 3.2 Air Damping
  • 3.3 Surface Damping
  • 3.4 Anchor Damping
  • 3.5 Electrical Damping
  • 3.6 Thermoelastic Dissipation (TED)
  • 3.7 Akhiezer Effect (AKE)
  • References
  • Chapter 4 Parametrically Excited Micro- and Nanosystems
  • 4.1 Introduction
  • 4.2 Sources of Parametric Excitation in MEMS and NEMS
  • 4.2.1 Parametric Excitation via Electrostatic Transduction
  • 4.2.2 Other Sources of Parametric Excitation
  • 4.3 Modeling the Underlying Dynamics-Variants of the Mathieu Equation
  • 4.4 Perturbation Analysis
  • 4.5 Linear, Steady-State Behaviors
  • 4.6 Sources of Nonlinearity and Nonlinear Steady-State Behaviors
  • 4.7 Complex Dynamics in Parametrically Excited Micro/Nanosystems
  • 4.8 Combined Parametric and Direct Excitations
  • 4.9 Select Applications
  • 4.9.1 Resonant Mass Sensing
  • 4.9.2 Inertial Sensing
  • 4.9.3 Micromirror Actuation
  • 4.9.4 Bifurcation Control
  • 4.10 Some Parting Thoughts
  • Acknowledgment
  • References
  • Chapter 5 Finite Element Modeling of Resonators
  • 5.1 Introduction to Finite Element Analysis
  • 5.1.1 Mathematical Fundamentals
  • 5.1.1.1 Static Problems
  • 5.1.1.2 Dynamic Problems (Modal Analysis)
  • 5.1.2 Practical Implementation
  • 5.1.2.1 Set Up
  • 5.1.2.2 Processing
  • 5.1.2.3 Post-processing
  • 5.2 Application of FEA in MEMS Resonator Design
  • 5.2.1 Modal Analysis
  • 5.2.1.1 Mode Shape Analysis for Design Optimization
  • 5.2.1.2 Modeling Process-Induced Variation
  • 5.2.2 Loss Analysis
  • 5.2.2.1 Anchor Loss
  • 5.2.2.2 Thermoelastic Damping
  • 5.2.3 Frequency Response Analysis
  • 5.2.3.1 Spurious Mode Identification and Rejection
  • 5.2.3.2 Filter Design
  • 5.3 Summary
  • References
  • Part II: Implementation.
  • Chapter 6 Capacitive Resonators
  • 6.1 Introduction
  • 6.2 Capacitive Transduction
  • 6.3 Electromechanical Actuation
  • 6.3.1 Electromechanical Force Derivation
  • 6.3.2 Voltage Dependent Force Components
  • 6.4 Capacitive Sensing and Motional Capacitor Topologies
  • 6.4.1 Parallel-Moving Plates
  • 6.4.2 Perpendicular Moving Plates
  • 6.4.3 Electrostatic Spring Softening and Snap-In
  • 6.4.4 Angular Moving Plates
  • 6.5 Electrical Isolation
  • 6.6 Capacitive Resonator Circuit Models
  • 6.7 Capacitive Interfaces
  • 6.7.1 Transimpedance Amplifier
  • 6.7.2 High-Impedance Voltage Detection
  • 6.7.3 Switched-Capacitor Detection
  • 6.8 Conclusion
  • Acknowledgment
  • References
  • Chapter 7 Piezoelectric Resonant MEMS
  • 7.1 Introduction to Piezoelectric Resonant MEMS
  • 7.2 Fundamentals of Piezoelectricity and Piezoelectric Resonators
  • 7.3 Thin Film Piezoelectric Materials for Resonant MEMS
  • 7.4 Equivalent Electrical Circuit of Piezoelectric Resonant MEMS
  • 7.4.1 One-Port Piezoelectric Resonators
  • 7.4.2 Two-Port Piezoelectric Resonators
  • 7.4.3 Resonator Figure of Merit
  • 7.5 Examples of Piezoelectric Resonant MEMS: Vibrations in Beams, Membranes, and Plates
  • 7.5.1 Flexural Vibrations
  • 7.5.2 Width-Extensional Vibrations
  • 7.5.3 Thickness-Extensional and Shear Vibrations
  • 7.6 Conclusions
  • References
  • Chapter 8 Electrothermal Excitation of Resonant MEMS
  • 8.1 Basic Principles
  • 8.1.1 Fundamental Equations for Electro-Thermo-Mechanical Transduction
  • 8.1.2 Time Constants and Frequency Dependencies
  • 8.2 Actuator Implementations
  • 8.2.1 Thin-Film/Surface Actuators
  • 8.2.2 Bulk Actuators
  • 8.3 Piezoresistive Sensing
  • 8.3.1 Fundamental Equations for Piezoresistive Sensing
  • 8.3.2 Piezoresistor Implementations
  • 8.3.3 Self-Sustained Thermal-Piezoresistive Oscillators.
  • 8.4 Modeling and Optimization of Single-Port Thermal-Piezoresistive Resonators
  • 8.4.1 Thermo-Electro-Mechanical Modeling
  • 8.4.2 Resonator Equivalent Electrical Circuit and Optimization
  • 8.5 Examples of Thermally Actuated Resonant MEMS
  • References
  • Chapter 9 Nanoelectromechanical Systems (NEMS)
  • 9.1 Introduction
  • 9.1.1 Fundamental Studies
  • 9.1.2 Transduction at the Nanoscale
  • 9.1.3 Materials, Fabrication, and System Integration
  • 9.1.4 Electronics
  • 9.1.5 Nonlinear MEMS/NEMS Applications
  • 9.2 Carbon-Based NEMS
  • 9.3 Toward Functional Bio-NEMS
  • 9.3.1 NEMS-Based Energy Harvesting: an Emerging Field
  • 9.4 Summary and Outlook
  • References
  • Chapter 10 Organic Resonant MEMS Devices
  • 10.1 Introduction
  • 10.2 Device Designs
  • 10.2.1 Conductive Polymer with Electrostatic Actuation
  • 10.2.2 Dielectric Polymer with Polarization Force Actuation
  • 10.2.3 Superparamagnetic Nanoparticle Composite with Magnetic Actuation
  • 10.2.4 Metallized Polymer with Lorentz Force Actuation
  • 10.3 Quality Factor of Polymeric Micromechanical Resonators
  • 10.3.1 Quality Factor in Viscous Environment
  • 10.3.2 Quality Factor of Relaxed Resonators in Vacuum
  • 10.3.3 Quality Factor of Unrelaxed Resonators in Vacuum
  • 10.4 Applications
  • 10.4.1 Humidity Sensor
  • 10.4.2 Vibrational Energy Harvesting
  • 10.4.3 Artificial Cochlea
  • References
  • Chapter 11 Devices with Embedded Channels
  • 11.1 Introduction
  • 11.2 Theory
  • 11.2.1 Effects of Fluid Density and Flow
  • 11.2.2 Effects of Viscosity on the Quality Factor
  • 11.2.3 Effect of Surface Reactions
  • 11.2.4 Single Particle Measurements
  • 11.3 Device Technology
  • 11.3.1 Fabrication
  • 11.3.2 Packaging Considerations
  • 11.4 Applications
  • 11.4.1 Measurements of Fluid Density and Mass Flow.
  • 11.4.2 Single Particle and Single Cell Measurements
  • 11.4.3 Surface-Based Measurements
  • 11.5 Conclusion
  • References
  • Chapter 12 Hermetic Packaging for Resonant MEMS
  • 12.1 Introduction
  • 12.2 Overview of Packaging Types
  • 12.3 Die-Level Vacuum-Can Packaging
  • 12.4 Wafer Bonding for Device Packaging
  • 12.5 Thin Film Encapsulation-Based Packaging
  • 12.6 Getters
  • 12.7 The Stanford epi-Seal Process for Packaging of MEMS Resonators
  • 12.8 Conclusion
  • References
  • Chapter 13 Compensation, Tuning, and Trimming of MEMS Resonators
  • 13.1 Introduction
  • 13.2 Compensation Techniques in MEMS Resonators
  • 13.2.1 Compensation for Thermal Effects
  • 13.2.1.1 Engineering the Geometry
  • 13.2.1.2 Doping
  • 13.2.1.3 Composite Resonators
  • 13.2.2 Compensation for Manufacturing Uncertainties
  • 13.2.3 Compensation and Control of Quality Factor
  • 13.2.4 Compensation for Polarization Voltage
  • 13.3 Tuning Methods in MEMS Resonators
  • 13.3.1 Device Level Tuning
  • 13.3.1.1 Electrostatic Tuning
  • 13.3.1.2 Thermal Tuning
  • 13.3.1.3 Piezoelectric Tuning
  • 13.3.2 System-Level Tuning
  • 13.4 Trimming Methods
  • References
  • Part III: Application
  • Chapter 14 MEMS Inertial Sensors
  • 14.1 Introduction
  • 14.2 Accelerometers
  • 14.2.1 Principles of Operation
  • 14.2.2 Quasi-Static Accelerometers
  • 14.2.2.1 Squeeze-Film Damping
  • 14.2.2.2 Electromechanical Transduction in Accelerometers
  • 14.2.2.3 Mechanical Noise in Accelerometers
  • 14.2.3 Resonant Accelerometers
  • 14.2.3.1 Electrostatic Spring-Softening
  • 14.2.3.2 Acceleration Sensitivity in Resonant Accelerometers
  • 14.3 Gyroscopes
  • 14.3.1 Principles of Operation
  • 14.3.1.1 Vibratory Gyroscopes
  • 14.3.1.2 Mode-Split versus Mode-Matched Gyroscopes
  • 14.3.2 Bulk-Acoustic Wave (BAW) Gyroscopes
  • 14.3.2.1 Angular Gain
  • 14.3.2.2 Zero-Rate Output.