Trends in deep learning methodologies : algorithms, applications, and systems /

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful comput...

Full description

Saved in:
Bibliographic Details
Other Authors: Piuri, Vincenzo (Editor), Raj, Sandeep (Editor), Genovese, Angelo, 1985- (Editor), Srivastava, Rajshree (Editor)
Format: eBook
Language:English
Published: London : Academic Press, 2021.
Series:Hybrid computational intelligence for pattern analysis and understanding
Subjects:
Online Access:CONNECT
CONNECT
CONNECT
CONNECT
LEADER 04532cam a2200637 i 4500
001 mig00005968977
006 m o d
007 cr cnu---unuuu
008 201109t20212021enka ob 001 0 eng d
005 20220721140502.4
035 |a 1WRLDSHRon1230531334 
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d OCLCF  |d OPELS  |d YDXIT  |d ABC  |d N$T  |d YDX  |d UKAHL  |d WAU  |d OCLCO  |d ORMDA 
015 |a GBC0I0460  |2 bnb 
016 7 |a 020013543  |2 Uk 
019 |a 1220827976  |a 1223025637 
020 |a 0128232684 
020 |a 9780128222263  |q (electronic bk.) 
020 |a 0128222263  |q (electronic bk.) 
020 |a 9780128232682  |q (electronic bk.) 
035 |a (OCoLC)1230531334  |z (OCoLC)1220827976  |z (OCoLC)1223025637 
037 |a 9780128232682  |b Ingram Content Group 
037 |a 9780128232682  |b O'Reilly Media 
050 4 |a Q335  |b .T74 2021 
082 0 4 |a 006.3  |2 23 
049 |a TXMM 
245 0 0 |a Trends in deep learning methodologies :  |b algorithms, applications, and systems /  |c edited by Vincenzo Piuri, Sandeep Raj, Angelo Genovese, Rajshree Srivastava. 
264 1 |a London :  |b Academic Press,  |c 2021. 
300 |a 1 online resource (xvii, 288 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Hybrid computational intelligence for pattern analysis and understanding 
504 |a Includes bibliographical references and index. 
520 |a Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. 
588 0 |a Online resource; title from PDF title page (Ebook Central, viewed July 22, 2021). 
590 |a ScienceDirect eBook - Mathematics and Computing 2021 [EBCMAS21] 
590 |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) 
650 0 |a Artificial intelligence. 
650 0 |a Neural networks (Computer science) 
700 1 |a Piuri, Vincenzo,  |e editor. 
700 1 |a Raj, Sandeep,  |e editor. 
700 1 |a Genovese, Angelo,  |d 1985-  |e editor. 
700 1 |a Srivastava, Rajshree,  |e editor. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |z 9780128222263 
830 0 |a Hybrid computational intelligence for pattern analysis and understanding 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://www.sciencedirect.com/science/book/9780128222263  |z CONNECT  |3 Elsevier  |t 0 
856 4 0 |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9780128232682/?ar  |z CONNECT  |3 O'Reilly 
902 |a mig00005968977 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s 154bea86-0d36-42a3-b15f-4203a0d616fd  |i d90eaf49-556d-4c3c-a58a-581c0de85539  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e Q335 .T74 2021  |h Library of Congress classification 
856 4 0 |3 Elsevier  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://www.sciencedirect.com/science/book/9780128222263  |z CONNECT 
856 4 0 |3 O'Reilly  |t 0  |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9780128232682/?ar  |z CONNECT