Hands-on unsupervised learning with Python : implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more /

Unsupervised learning is a key required block in both machine learning and deep learning domains. You will explore how to make your models learn, grow, change, and develop by themselves whenever they are exposed to a new set of data. With this book, you will learn the art of unsupervised learning fo...

Full description

Saved in:
Bibliographic Details
Main Author: Bonaccorso, Giuseppe (Author)
Format: eBook
Language:English
Published: Birmingham : Packt Publishing Ltd, 2019.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 05569cam a2200541Ma 4500
001 mig00005966655
003 OCoLC
005 20210629045448.9
006 m o d
007 cr cnu---unuuu
008 190309s2019 enk o 000 0 eng d
020 |a 1789349273 
020 |a 9781789349276  |q (electronic bk.) 
035 |a (OCoLC)1089524139 
035 0 0 |a ocm00000001wrldshron1089524139 
037 |a 05E6098E-D9CF-4DDF-A36B-323280DD3E78  |b OverDrive, Inc.  |n http://www.overdrive.com 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OCLCF  |d TEFOD  |d OCLCQ 
049 |a TXMM 
050 4 |a QA76.73.P98 
082 0 4 |a 005.13/3  |2 23 
100 1 |a Bonaccorso, Giuseppe,  |e author. 
245 1 0 |a Hands-on unsupervised learning with Python :  |b implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more /  |c Giuseppe Bonaccorso. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (375 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Unsupervised Learning; Technical requirements; Why do we need machine learning?; Descriptive analysis; Diagnostic analysis; Predictive analysis; Prescriptive analysis; Types of machine learning algorithm; Supervised learning algorithms; Supervised hello world!; Unsupervised learning algorithms; Cluster analysis; Generative models; Association rules; Unsupervised hello world!; Semi-supervised learning algorithms; Reinforcement learning algorithms 
505 8 |a Why Python for data science and machine learning?Summary; Questions; Further reading; Chapter 2: Clustering Fundamentals; Technical requirements; Introduction to clustering; Distance functions; K-means; K-means++; Analysis of the Breast Cancer Wisconsin dataset; Evaluation metrics; Minimizing the inertia; Silhouette score; Completeness score; Homogeneity score; A trade-off between homogeneity and completeness using the V-measure; Adjusted Mutual Information (AMI) score; Adjusted Rand score; Contingency matrix; K-Nearest Neighbors; Vector Quantization; Summary; Questions; Further reading 
505 8 |a Chapter 3: Advanced ClusteringTechnical requirements; Spectral clustering; Mean shift; DBSCAN; Calinski-Harabasz score; Analysis of the Absenteeism at Work dataset using DBSCAN; Cluster instability as a performance metric; K-medoids; Online clustering; Mini-batch K-means; BIRCH; Comparison between mini-batch K-means and BIRCH; Summary; Questions; Further reading; Chapter 4: Hierarchical Clustering in Action; Technical requirements; Cluster hierarchies; Agglomerative clustering; Single and complete linkages; Average linkage; Ward's linkage; Analyzing a dendrogram 
505 8 |a Cophenetic correlation as a performance metricAgglomerative clustering on the Water Treatment Plant dataset; Connectivity constraints; Summary; Questions; Further reading; Chapter 5: Soft Clustering and Gaussian Mixture Models; Technical requirements; Soft clustering; Fuzzy c-means; Gaussian mixture; EM algorithm for Gaussian mixtures; Assessing the performance of a Gaussian mixture with AIC and BIC; Component selection using Bayesian Gaussian mixture; Generative Gaussian mixture; Summary; Questions; Further reading; Chapter 6: Anomaly Detection; Technical requirements 
505 8 |a Probability density functionsAnomalies as outliers or novelties; Structure of the dataset; Histograms; Kernel density estimation (KDE); Gaussian kernel; Epanechnikov kernel; Exponential kernel; Uniform (or Tophat) kernel; Estimating the density; Anomaly detection; Anomaly detection with the KDD Cup 99 dataset; One-class support vector machines; Anomaly detection with Isolation Forests; Summary; Questions; Further reading; Chapter 7: Dimensionality Reduction and Component Analysis; Technical requirements; Principal Component Analysis (PCA); PCA with Singular Value Decomposition; Whitening 
500 |a PCA with the MNIST dataset 
520 |a Unsupervised learning is a key required block in both machine learning and deep learning domains. You will explore how to make your models learn, grow, change, and develop by themselves whenever they are exposed to a new set of data. With this book, you will learn the art of unsupervised learning for different real-world challenges. 
590 |a EBSCO eBook Academic Comprehensive Collection North America 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |a Bonaccorso, Giuseppe.  |t Hands-On Unsupervised Learning with Python : Implement Machine Learning and Deep Learning Models Using Scikit-Learn, TensorFlow, and More.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789348279 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2037536  |z CONNECT  |3 EBSCO  |t 0 
907 |a 5423297  |b 06-29-21  |c 06-29-21 
998 |a wi  |b 06-29-21  |c m  |d z   |e -  |f eng  |g enk  |h 0  |i 1 
994 |a 92  |b TXM 
999 f f |i 103364e9-d386-49fa-99ac-88a51c73a96d  |s 463057bd-2c68-4ab7-ba68-8086d051cfd8  |t 0 
952 f f |t 1  |e QA76.73.P98  |h Library of Congress classification 
856 4 0 |3 EBSCO  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2037536  |z CONNECT