Mathematical Feynman path integrals and their applications /

Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have d...

Full description

Saved in:
Bibliographic Details
Main Author: Mazzucchi, Sonia.
Corporate Author: World Scientific (Firm)
Format: eBook
Language:English
Published: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 04674cam a2200517Ka 4500
001 mig00005403167
003 OCoLC
005 20210517050835.1
006 m o d
007 cr buu|||uu|||
008 100511s2009 si ob 001 0 eng d
019 |a 536316600  |a 592756206  |a 796386275 
020 |a 9789812836915  |q (electronic bk.) 
020 |a 9812836918  |q (electronic bk.) 
020 |z 981283690X 
020 |z 9789812836908 
035 |a (OCoLC)613396809  |z (OCoLC)536316600  |z (OCoLC)592756206  |z (OCoLC)796386275 
035 0 0 |a ocm00000001wrldshrocn613396809 
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d EBLCP  |d YDXCP  |d IDEBK  |d OCLCQ  |d DEBSZ  |d NLGGC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d JBG  |d WYU  |d OCLCQ  |d STF  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ 
049 |a TXMM 
050 4 |a QC174.17.F45  |b M39 2009eb 
082 0 4 |a 515.43  |2 22 
100 1 |a Mazzucchi, Sonia. 
245 1 0 |a Mathematical Feynman path integrals and their applications /  |c Sonia Mazzucchi. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (viii, 216 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 197-213) and index. 
505 0 |a 1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results. 
520 |a Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals. 
588 0 |a Print version record. 
590 |a EBSCO eBook Academic Comprehensive Collection North America 
650 0 |a Feynman integrals. 
710 2 |a World Scientific (Firm) 
730 0 |a WORLDSHARE SUB RECORDS 
776 1 |z 981283690X 
776 1 |z 9789812836908 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305263  |z CONNECT  |3 EBSCO  |t 0 
907 |a 4677668  |b 05-23-21  |c 07-02-20 
998 |a wi  |b 05-23-21  |c m  |d z   |e -  |f eng  |g si   |h 0  |i 2 
994 |a 92  |b TXM 
999 f f |i 65dc618b-fcdc-4112-ae3f-17c013c527b8  |s bbe0833c-831a-4732-8b40-61d04dd801f9  |t 0 
952 f f |t 1  |e QC174.17.F45 M39 2009eb  |h Library of Congress classification 
856 4 0 |3 EBSCO  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305263  |z CONNECT