Mathematics of public key cryptography /

"Public key cryptography is a major interdisciplinary subject with many real-world applications, such as digital signatures. A strong background in the mathematics underlying public key cryptography is essential for a deep understanding of the subject, and this book provides exactly that for st...

Full description

Saved in:
Bibliographic Details
Main Author: Galbraith, Steven D. (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2012.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 07184cam a2200721Ii 4500
001 mig00005385591
003 OCoLC
005 20210517055239.5
006 m o d
007 cr |n|---|||||
008 120514s2012 enk ob 001 0 eng d
010 |z  2011042606 
019 |a 793946439  |a 794002185  |a 809313156  |a 815735261  |a 817076203  |a 817930636  |a 975017488  |a 975126128  |a 1055762844  |a 1056571846  |a 1058189590  |a 1082685365  |a 1153562507 
020 |a 9781139221146 
020 |a 1139221140 
020 |a 1107013925 
020 |a 9781107013926 
020 |a 9781139224581  |q (electronic bk.) 
020 |a 1139224581  |q (electronic bk.) 
020 |a 9781139218061 
020 |a 1139218069 
020 |a 9781139012843  |q (electronic bk.) 
020 |a 1139012843  |q (electronic bk.) 
020 |a 1280393335 
020 |a 9781280393334 
024 8 |a 9786613571250 
035 |a (OCoLC)793510851  |z (OCoLC)793946439  |z (OCoLC)794002185  |z (OCoLC)809313156  |z (OCoLC)815735261  |z (OCoLC)817076203  |z (OCoLC)817930636  |z (OCoLC)975017488  |z (OCoLC)975126128  |z (OCoLC)1055762844  |z (OCoLC)1056571846  |z (OCoLC)1058189590  |z (OCoLC)1082685365  |z (OCoLC)1153562507 
035 0 0 |a ocm00000001wrldshrocn793510851 
037 |a 357125  |b MIL 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCQ  |d CDX  |d OCLCO  |d YDXCP  |d OCLCO  |d OCLCQ  |d AUD  |d DEBSZ  |d OCLCQ  |d OCLCO  |d IDEBK  |d OCLCF  |d N$T  |d COO  |d E7B  |d CAMBR  |d OCLCQ  |d OCLCA  |d VGM  |d OCLCQ  |d HEBIS  |d OCLCO  |d BUF  |d COCUF  |d STF  |d MERUC  |d LOA  |d ZCU  |d ICG  |d OCLCQ  |d CUI  |d TKN  |d OCLCA  |d U3W  |d VT2  |d DKC  |d OCLCQ  |d G3B  |d K6U  |d OCLCQ  |d UKCRE  |d OCLCA  |d UKAHL  |d AJS  |d S2H  |d OCLCO 
049 |a TXMM 
050 4 |a QA268  |b .G35 2012 
082 0 4 |a 003.54  |a 003/.54  |a 005.820151 
084 |a MAT008000  |2 bisacsh 
100 1 |a Galbraith, Steven D.,  |e author 
245 1 0 |a Mathematics of public key cryptography /  |c Stephen D. Galbraith. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (632 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
505 0 |a Cover; MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY; Title; Copyright; Contents; Preface; Acknowledgements; 1: Introduction; 1.1 Public key cryptography; 1.2 The textbook RSA cryptosystem; 1.3 Formal definition of public key cryptography; 1.3.1 Security of encryption; 1.3.2 Security of signatures; PART I: BACKGROUND; 2: Basic algorithmic number theory; 2.1 Algorithms and complexity; 2.1.1 Randomised algorithms; 2.1.2 Success probability of a randomised algorithm; 2.1.3 Reductions; 2.1.4 Random self-reducibility; 2.2 Integer operations; 2.2.1 Faster integer multiplication; 2.3 Euclid's algorithm. 
505 8 |a 2.4 Computing Legendre and Jacobi symbols2.5 Modular arithmetic; 2.6 Chinese remainder theorem; 2.7 Linear algebra; 2.8 Modular exponentiation; 2.9 Square roots modulo p; 2.10 Polynomial arithmetic; 2.11 Arithmetic in finite fields; 2.12 Factoring polynomials over finite fields; 2.13 Hensel lifting; 2.14 Algorithms in finite fields; 2.14.1 Constructing finite fields; 2.14.2 Solving quadratic equations in finite fields; 2.14.3 Isomorphisms between finite fields; 2.15 Computing orders of elements and primitive roots; 2.15.1 Sets of exponentials of products. 
505 8 |a 2.15.2 Computing the order of a group element2.15.3 Computing primitive roots; 2.16 Fast evaluation of polynomials at multiple points; 2.17 Pseudorandom generation; 2.18 Summary; 3: Hash functions and MACs; 3.1 Security properties of hash functions; 3.2 Birthday attack; 3.3 Message authentication codes; 3.4 Constructions of hash functions; 3.5 Number-theoretic hash functions; 3.6 Full domain hash; 3.7 Random oracle model; PART II: ALGEBRAIC GROUPS; 4: Preliminary remarks on algebraic groups; 4.1 Informal definition of an algebraic group; 4.2 Examples of algebraic groups. 
505 8 |a 4.3 Algebraic group quotients4.4 Algebraic groups over rings; 5: Varieties; 5.1 Affine algebraic sets; 5.2 Projective algebraic sets; 5.3 Irreducibility; 5.4 Function fields; 5.5 Rational maps and morphisms; 5.6 Dimension; 5.7 Weil restriction of scalars; 6: Tori, LUC and XTR; 6.1 Cyclotomic subgroups of finite fields; 6.2 Algebraic tori; 6.3 The group Gq,2; 6.3.1 The torus T2; 6.3.2 Lucas sequences; 6.4 The group Gq,6; 6.4.1 The torus T6; 6.4.2 XTR; 6.5 Further remarks; 6.6 Algebraic tori over rings; 7: Curves and divisor class groups; 7.1 Non-singular varieties; 7.2 Weierstrass equations. 
505 8 |a 7.3 Uniformisers on curves7.4 Valuation at a point on a curve; 7.5 Valuations and points on curves; 7.6 Divisors; 7.7 Principal divisors; 7.8 Divisor class group; 7.9 Elliptic curves; 8: Rational maps on curves and divisors; 8.1 Rational maps of curves and the degree; 8.2 Extensions of valuations; 8.3 Maps on divisor classes; 8.4 Riemann-Roch spaces; 8.5 Derivations and differentials; 8.6 Genus zero curves; 8.7 Riemann-Roch theorem and Hurwitz genus formula; 9: Elliptic curves; 9.1 Group law; 9.2 Morphisms between elliptic curves; 9.3 Isomorphisms of elliptic curves; 9.4 Automorphisms. 
500 |a 9.5 Twists. 
520 |a "Public key cryptography is a major interdisciplinary subject with many real-world applications, such as digital signatures. A strong background in the mathematics underlying public key cryptography is essential for a deep understanding of the subject, and this book provides exactly that for students and researchers in mathematics, computer science and electrical engineering. Carefully written to communicate the major ideas and techniques of public key cryptography to a wide readership, this text is enlivened throughout with historical remarks and insightful perspectives on the development of the subject. Numerous examples, proofs and exercises make it suitable as a textbook for an advanced course, as well as for self-study. For more experienced researchers it serves as a convenient reference for many important topics: the Pollard algorithms, Maurer reduction, isogenies, algebraic tori, hyperelliptic curves and many more."--Provided by publisher. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
590 |a EBSCO eBook Academic Comprehensive Collection North America 
650 0 |a Coding theory. 
650 0 |a Cryptography  |x Mathematics. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |a Galbraith, Steven D.  |t Mathematics of Public Key Cryptography.  |d Cambridge : Cambridge University Press, ©2012  |z 9781107013926 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438540  |z CONNECT  |3 EBSCO  |t 0 
907 |a 4659237  |b 05-25-21  |c 07-02-20 
998 |a wi  |b 05-25-21  |c m  |d z   |e -  |f eng  |g enk  |h 0  |i 2 
994 |a 92  |b TXM 
999 f f |i d9859121-6ab8-4634-9219-f4077728fad8  |s 2cead119-cebf-4d0d-b68a-06b728532f83  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QA268 .G35 2012  |h Library of Congress classification 
856 4 0 |3 EBSCO  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438540  |z CONNECT