Henstock-Kurzweil integration on Euclidean spaces /

The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Tuo Yeong, 1967-
Format: eBook
Language:English
Published: New Jersey : World Scientific, ©2011.
Series:Series in real analysis ; v. 12.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 06349cam a2200541Ia 4500
001 mig00005376944
003 OCoLC
005 20210517053651.2
006 m o d
007 cr mnu---unuuu
008 110927s2011 nju ob 001 0 eng d
020 |a 9789814324595  |q (electronic bk.) 
020 |a 9814324590  |q (electronic bk.) 
020 |z 9789814324588 
020 |z 9814324582 
035 |a (OCoLC)754793038 
035 0 0 |a ocm00000001wrldshrocn754793038 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OSU  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d JBG  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d NRAMU  |d INT  |d OCLCQ  |d ICG  |d TKN  |d OCLCQ  |d LEAUB  |d UKAHL 
049 |a TXMM 
050 4 |a QA312  |b .L43 2011eb 
082 0 4 |a 515.4/3  |2 23 
100 1 |a Lee, Tuo Yeong,  |d 1967- 
245 1 0 |a Henstock-Kurzweil integration on Euclidean spaces /  |c Lee Tuo Yeong. 
260 |a New Jersey :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (ix, 314 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in real analysis ;  |v v. 12 
504 |a Includes bibliographical references (pages 295-303) and index. 
588 0 |a Print version record. 
505 0 |a 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks. 
505 8 |a 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks. 
520 |a The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus. 
590 |a EBSCO eBook Academic Comprehensive Collection North America 
650 0 |a Henstock-Kurzweil integral. 
650 0 |a Lebesgue integral. 
650 0 |a Calculus, Integral. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |a Lee, Tuo Yeong, 1967-  |t Henstock-Kurzweil integration on Euclidean spaces.  |d Singapore ; Hackensack, N.J. : World Scientific, ©2011  |z 9789814324588  |w (OCoLC)724966681 
830 0 |a Series in real analysis ;  |v v. 12. 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631  |z CONNECT  |3 EBSCO  |t 0 
907 |a 4650279  |b 05-25-21  |c 07-02-20 
998 |a wi  |b 05-25-21  |c m  |d z   |e -  |f eng  |g nju  |h 0  |i 2 
994 |a 92  |b TXM 
999 f f |i cd313b78-b5ee-42f7-afca-7378931b05aa  |s f2577936-25b9-40ef-9c99-19234fead6bb  |t 0 
952 f f |t 1  |e QA312 .L43 2011eb  |h Library of Congress classification 
856 4 0 |3 EBSCO  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631  |z CONNECT