Integrated forest biorefineries : challenges and opportunities /

This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and developm...

Full description

Saved in:
Bibliographic Details
Other Authors: Christopher, Lew.
Format: eBook
Language:English
Published: Cambridge : Royal Society of Chemistry, 2013.
Series:RSC green chemistry ; 18
Subjects:
Online Access:CONNECT
CONNECT
Table of Contents:
  • Machine generated contents note: ch. 1 Integrated Forest Biorefineries: Current State and Development Potential / Lew P. Christopher
  • 1.1. Introduction
  • 1.2. Integrated Forest Biorefineries
  • 1.2.1. Hemicellulose Platform
  • 1.2.1.1. Hemicellulose Composition and Structure
  • 1.2.1.2. Fate of Hemicellulose during Pulping
  • 1.2.1.3. Hemicellulose Extraction
  • 1.2.1.4. Bioproducts from Hemicellulose
  • 1.2.1.5. Hemicellulose-Based Biorefinery
  • 1.2.2. Lignin Platform
  • 1.2.2.1. Lignin Composition and Structure
  • 1.2.2.2. Fate of Lignin during Pulping
  • 1.2.2.3. Bioproducts from Lignin
  • 1.2.3. Extractives Platform
  • 1.2.3.1.Composition, Classification and Properties of Extractives
  • 1.2.3.2. Fate of Extractives during Pulping and Bleaching
  • 1.3. Concluding Remarks
  • Acknowledgements
  • References
  • ch. 2 Economic and Policy Aspects of Integrated Forest Biorefineries / Jianbang Gan
  • 2.1. Introduction
  • 2.2. Traditional Forest Products Sector.
  • Contents note continued: 2.2.1. Conditions and Outlook of Forest Products Markets
  • 2.2.2. Supply Chains of Traditional Forest Products
  • 2.3. Integrated Forest Biorefineries (IFBRs)
  • 2.3.1. Supply Chains of IFBRs
  • 2.3.2. Key Economic Aspects of IFBRs
  • 2.3.2.1. End-Product Portfolio
  • 2.3.2.2. Feedstock Choices
  • 2.3.2.3. Logistics and Conversion Technologies
  • 2.3.2.4. Siting and Size of IFBRs
  • 2.4.A. Decision Support Model for IFBRs
  • 2.5. Policy Aspects of IFBRs
  • 2.5.1. Major Barriers to IFBR Development and Deployment
  • 2.5.2. Policy for Enhancing IFBR Development and Deployment
  • 2.6. Summary and Discussion
  • Acknowledgement
  • References
  • ch. 3 Integrated Forest Biorefineries: Sustainability Considerations for Forest Biomass Feedstocks / Virginia H. Dale
  • 3.1. Introduction
  • 3.2. Background
  • 3.3.U.S. Sustainability Frameworks and Policy
  • 3.4. International Sustainability Frameworks and Policy
  • 3.5. Sustainability Topics to Watch
  • Acknowledgements.
  • Contents note continued: References
  • ch. 4 Integrated Forest Biorefineries: Product-Based Economic Factors / Michael A. Behrens
  • 4.1. Introduction
  • 4.2. Biorefinery Operational Parameters
  • 4.3. Hydrolysis Yield Impact on Economic Models
  • 4.4. Benefits of Product-Driven Operational Parameters
  • 4.5. Value of Residues
  • 4.6. Thermochemical Options
  • 4.7. Integrated Processing
  • 4.8. Conclusion
  • References
  • ch. 5 Integrated Forest Biorefineries: Industrial Sustainability / Emmanuel Kofi Ackom
  • 5.1. Introduction
  • 5.2. Industrial Sustainability: An Overview
  • 5.3. Integrated Forest Biorefinery: An Overview
  • 5.3.1. Retrofitting Pulp and Paper Mills into Integrated Forest Biorefineries
  • 5.3.2. Integrated Forest Biorefinery with Industrial Sustainability Applications: A Case Study on Tembec Temiscaming
  • 5.4. Opportunities in Industrial Sustainability for Integrated Forest Biorefinery: A Case Study
  • 5.4.1. Environmental Policy
  • 5.4.2. Raw Material Sourcing.
  • Contents note continued: 5.4.3. Manufacturing
  • 5.4.4. Environmentally Benign Management of Waste Effluent and Reutilization
  • 5.4.5. End-of-Life Management of Products
  • 5.4.6. Socioeconomic Aspects
  • 5.5. Challenges: Industrial Sustainability of Integrated Forest Biorefinery
  • 5.5.1. Environmental Sustainability Issues Related to Feedstock
  • 5.5.1.1. Greenhouse-Gas Emissions (Direct and Indirect)
  • 5.5.1.2. Energy
  • 5.5.1.3. Land for Food, Fuel and Fiber
  • 5.5.1.4. Water
  • 5.5.1.5. Biodiversity
  • 5.5.1.6. Socioeconomic Aspects
  • 5.5.2. Research and Development
  • 5.5.3. Logistics
  • 5.5.4. Investment
  • 5.5.5.Competition with Other Industries for Feedstock
  • 5.5.6. Processing
  • 5.5.7. End-of-Life Legislations for New Products
  • 5.6. Policy Intervention: Improving Competitiveness of Integrated Forest Biorefinery Through Industrial Sustainability
  • 5.7. Conclusions
  • References
  • ch. 6 Prehydrolysis Pulping with Fermentation Coproducts / T.W. Jeffries.
  • Contents note continued: 6.1. Introduction and Background
  • 6.2. Prehydrolysis Thermomechanical Pulping
  • 6.2.1. Experimental Prehydrolysis-TMP
  • 6.2.2. Experimental Fermentation of Hydrolysate Sugars
  • 6.2.3. Modeling Prehydrolysis-TMP and Fermentation Process Concept
  • 6.3. Summary and Path Forward
  • References
  • ch. 7 Niche Position and Opportunities for Woody Biomass Conversion / Joel R. Howard
  • 7.1. The "Business" of Transforming Plant Biomass for Human Use
  • 7.2. The Science Behind the Technology: Woody Biomass Conversions
  • 7.3. Pretreatment Processes
  • 7.3.1. Acid Pretreatment
  • 7.3.2. Alkaline Pretreatment
  • 7.3.3. Steam Explosion Pretreatment
  • 7.3.4. Ammonia Fiber Explosion Pretreatment (AFEX)
  • 7.3.5. Hydrothermal Pretreatment
  • 7.4. Bringing the Science to Commerce: ABS Process[™] Biorefinery Technology
  • 7.5. Output Products from the ABS Process[™]
  • 7.5.1. Products from Extracted Wood and Nonfood Agricultural Materials.
  • Contents note continued: 7.5.2. Products from Extracted Sugars
  • 7.5.3. Chemicals and Materials
  • 7.5.4. Insol Fraction
  • 7.5.5. Sol Fraction
  • 7.6. Summary
  • References
  • ch. 8 Lignin Recovery and Lignin-Based Products / Birgit Backlund
  • 8.1. Lignin Sources
  • 8.1.1. Sources in Nature
  • 8.1.2. Industrial Sources
  • 8.2. Lignin Production and Process Integration
  • 8.2.1. Lignins from Alkaline Pulping
  • 8.2.1.1. Lignin Removal from Pulping Liquors
  • 8.2.1.2. Analytical Data on Kraft and Soda Lignins
  • 8.2.1.3. Process Integration and System Aspects
  • 8.2.2. Lignin from Sulfite Pulping
  • 8.2.2.1. Analytical Data on Sulfite Lignins
  • 8.2.3. Lignin from Other Liquors
  • 8.3. Lignin Upgrading and Products
  • 8.3.1. Situation Today
  • 8.3.2. Applications for Polymeric Lignin
  • 8.3.2.1. Carbon Fibers
  • 8.3.2.2. Activated Carbon
  • 8.3.2.3. Polyurethanes
  • 8.3.2.4. Adhesives
  • 8.3.2.5.Complexing Agents
  • 8.3.3. Applications for Monomeric Lignin
  • 8.3.3.1. Phenols.
  • Contents note continued: 8.3.3.2. Other Aromatics
  • 8.3.4. Fuel Applications
  • 8.3.4.1. Kraft Lignin Pellets and Kraft Lignin as Additive in Biofuel Pellets
  • 8.3.4.2. Kraft Lignin Fuel Slurry
  • 8.3.4.3. Experiences from Large-Scale Boiler Trials
  • References
  • ch. 9 Integrated Forest Biorefineries: Gasification and Pyrolysis for Fuel and Power Production / Steven Taylor
  • 9.1. Biomass Gasification
  • 9.1.1. Biomass Characterization
  • 9.1.2. Gasifier Types and Processes
  • 9.1.3. Chemical Reactions in the Gasification Process
  • 9.1.4. Effect of Various Parameters in the Gasification Process
  • 9.1.4.1. Moisture Content
  • 9.1.4.2. Equivalence Ratio
  • 9.1.4.3. Temperature
  • 9.1.4.4. Biomass Type
  • 9.1.4.5. Particle Size
  • 9.1.4.6. Pressure
  • 9.1.4.7. Gasification Medium
  • 9.1.4.8. Bed Materials
  • 9.1.5. Gasification of Black Liquor
  • 9.1.6. Use of Producer Gas for Power and Fuels
  • 9.2. Fast Pyrolysis
  • 9.2.1. Pyrolysis Reactor Configurations
  • 9.2.1.1. Bubbling-Fluidized Bed.
  • Contents note continued: 9.2.1.2. Circulating-Fluidized Bed
  • 9.2.1.3. Rotating-Cone Pyrolyzer
  • 9.2.1.4. Ablative Pyrolysis
  • 9.2.1.5. Vacuum Pyrolysis
  • 9.2.1.6. Auger Reactor
  • 9.2.2. Pyrolysis Mechanism and Pathways
  • 9.2.3. Bio-Oil Properties
  • 9.2.4. Bio-Oil Applications
  • 9.2.4.1.Combustion
  • 9.2.4.2. Transportation Fuels
  • 9.2.4.3. Chemicals
  • 9.2.5. Bio-Oil Upgrading
  • 9.2.5.1. Hydrotreating
  • 9.2.5.2. Catalytic Cracking
  • 9.2.5.3. Catalytic Pyrolysis
  • 9.2.6. Pyrolysis of Lignin
  • 9.2.7. Economical Analysis
  • References
  • ch. 10 Biohydrogen Production from Cellulosic Biomass / Pin-Ching Maness
  • 10.1. Biohydrogen
  • 10.1.1. Dark Fermentative Hydrogen Production
  • 10.1.2. Hydrogenase Enzymes
  • 10.1.2.1.[FeFe]-Hydrogenases
  • 10.1.2.2.[NiFe]-Hydrogenases
  • 10.2. Thermodynamic Considerations
  • 10.3. Hydrogen Yields from Lignocellulosic Biomass
  • 10.3.1. Biohydrogen from Hydrolyzed Cellulose
  • 10.3.2. Biohydrogen from Direct Cellulose Fermentation.
  • Contents note continued: 10.4. Process Engineering for Fermentation
  • 10.4.1. Single-Phase Fermentation Reactions
  • 10.4.2. Two-Phase Systems
  • 10.4.2.1. Dark Fermentation Followed by Photofermentation
  • 10.4.2.2. Dark Fermentation Followed by Electrohydrogenesis
  • References
  • ch. 11 Integrated Technology for Biobased Composites / Theodore H. Wegner
  • 11.1. Introduction
  • 11.2. Conventional Biobased Composite Materials
  • 11.2.1.Composite Elements
  • 11.2.2. Adhesives
  • 11.2.3. Additives
  • 11.2.4. Products
  • 11.2.4.1. Oriented Strandboard
  • 11.2.4.2. Plywood
  • 11.2.4.3. Structural Composite Lumber and Timber Products
  • 11.2.4.4. Particleboard
  • 11.2.4.5. Fiberboard
  • 11.2.4.6. Cellulosic Board
  • 11.3. Wood-Nonwood Composite Materials
  • 11.3.1. Inorganic-Bonded Composite Materials
  • 11.3.2. Wood-Thermoplastic Composite Materials
  • References.