The geometry of information retrieval /

Information retrieval, IR, the science of extracting information from any potential source, can be viewed in a number of ways: logical, probabilistic and vector space models are some of the most important. In this book, the author, one of the leading researchers in the area, shows how these views ca...

Full description

Saved in:
Bibliographic Details
Main Author: Van Rijsbergen, C. J., 1943- (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2004.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 02851nam a22004218i 4500
001 mig00005073970
003 UkCbUP
005 20151005020621.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090505s2004||||enk o ||1 0|eng|d
020 |a 9780511543333 (ebook) 
020 |z 9780521838054 (hardback) 
035 0 0 |a ocm00000001camebacr9780511543333 
040 |a UkCbUP  |b eng  |e rda  |c UkCbUP 
050 0 0 |a QA76.9.M35  |b V38 2004 
082 0 0 |a 025.04  |2 22 
099 |a Electronic book 
100 1 |a Van Rijsbergen, C. J.,  |d 1943-  |e author. 
245 1 4 |a The geometry of information retrieval /  |c C.J. Van Rijsbergen. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2004. 
300 |a 1 online resource (xii, 150 pages) :  |b digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015). 
505 0 0 |g 1.  |t Introduction --  |g 2.  |t On sets and kinds for IR --  |g 3.  |t Vector and Hilbert spaces --  |g 4.  |t Linear transformations, operators and matrices --  |g 5.  |t Conditional logic in IR --  |g 6.  |t geometry of IR. 
520 |a Information retrieval, IR, the science of extracting information from any potential source, can be viewed in a number of ways: logical, probabilistic and vector space models are some of the most important. In this book, the author, one of the leading researchers in the area, shows how these views can be reforged in the same framework used to formulate the general principles of quantum mechanics. All the usual quantum-mechanical notions have their IR-theoretic analogues, and the standard results can be applied to address problems in IR, such as pseudo-relevance feedback, relevance feedback and ostensive retrieval. The relation with quantum computing is also examined. To keep the book self-contained appendices with background material on physics and mathematics are included. Each chapter ends with bibliographic remarks that point to further reading. This is an important, ground-breaking book, with much new material, for all those working in IR, AI and natural language processing. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Information storage and retrieval systems  |x Mathematics. 
730 0 |a Cambridge EBA Collection 
776 0 8 |i Print version:   |z 9780521838054 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9780511543333  |z CONNECT 
907 |a 3912738  |b 08-25-20  |c 03-18-19 
998 |a wi  |b 08-25-20  |c m  |d z   |e -  |f eng  |g enk  |h 4  |i 2 
999 f f |i 39bb543e-c7d1-4cbf-b89a-db3984e44a01  |s 18b368b2-efa5-4840-9776-0c7150073e39 
952 f f |e QA76.9.M35 V38 2004  |h Library of Congress classification 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9780511543333  |z CONNECT