Knots and Feynman diagrams /

This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormali...

Full description

Saved in:
Bibliographic Details
Main Author: Kreimer, Dirk, 1960- (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2000.
Series:Cambridge lecture notes in physics ; 13.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 02747nam a22004578i 4500
001 mig00005063675
003 UkCbUP
005 20151005020623.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090518s2000||||enk o ||1 0|eng|d
020 |a 9780511564024 (ebook) 
020 |z 9780521587617 (paperback) 
035 0 0 |a ocm00000001camebacr9780511564024 
040 |a UkCbUP  |b eng  |e rda  |c UkCbUP 
050 0 0 |a QC174.52.K56  |b K74 2000 
082 0 0 |a 530.14/3  |2 21 
099 |a Electronic book 
100 1 |a Kreimer, Dirk,  |d 1960-  |e author. 
245 1 0 |a Knots and Feynman diagrams /  |c Dirk Kreimer. 
246 3 |a Knots & Feynman Diagrams 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2000. 
300 |a 1 online resource (xii, 259 pages) :  |b digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge lecture notes in physics ;  |v 13 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015). 
520 |a This book provides an accessible and up-to-date introduction to how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. Beginning with a summary of key ideas from perturbative quantum field theory and an introduction to the Hopf algebra structure of renormalization, early chapters discuss the rationality of ladder diagrams and simple link diagrams. The necessary basics of knot theory are then presented and the number-theoretic relationship between the topology of Feynman diagrams and knot theory is explored. Later chapters discuss four-term relations motivated by the discovery of Vassiliev invariants in knot theory and draw a link to algebraic structures recently observed in noncommutative geometry. Detailed references are included. Dealing with material at perhaps the most productive interface between mathematics and physics, the book will be of interest to theoretical and particle physicists, and mathematicians. 
650 0 |a Quantum field theory. 
650 0 |a Knot theory. 
650 0 |a Feynman diagrams. 
730 0 |a Cambridge EBA Collection 
776 0 8 |i Print version:   |z 9780521587617 
830 0 |a Cambridge lecture notes in physics ;  |v 13. 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9780511564024  |z CONNECT  |t 0 
907 |a 3902387  |b 08-25-20  |c 03-18-19 
998 |a wi  |b 08-25-20  |c m  |d z   |e -  |f eng  |g enk  |h 0  |i 2 
999 f f |i f580bbab-90b4-4db0-a94d-4ac92b2f1be8  |s a85d1f80-001a-4603-bdf8-298e14fdf7d5  |t 0 
952 f f |t 1  |e QC174.52.K56 K74 2000  |h Library of Congress classification 
856 4 0 |t 0  |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9780511564024  |z CONNECT