Skew fields : theory of general division rings /

Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lect...

Full description

Saved in:
Bibliographic Details
Main Author: Cohn, P. M. (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 1995.
Series:Encyclopedia of mathematics and its applications ; v. 57.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 03290nam a22004578i 4500
001 mig00005063514
003 UkCbUP
005 20151005020622.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 110512s1995||||enk o ||1 0|eng|d
020 |a 9781139087193 (ebook) 
020 |z 9780521432177 (hardback) 
020 |z 9780521062947 (paperback) 
035 0 0 |a ocm00000001camebacr9781139087193 
040 |a UkCbUP  |b eng  |e rda  |c UkCbUP 
050 0 0 |a QA251.5  |b .C633 1995 
082 0 0 |a 512/.3  |2 20 
099 |a Electronic book 
100 1 |a Cohn, P. M.  |q (Paul Moritz),  |e author. 
245 1 0 |a Skew fields :  |b theory of general division rings /  |c P.M. Cohn. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 1995. 
300 |a 1 online resource (xv, 500 pages) :  |b digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v volume 57 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015). 
505 0 |a From the preface to Skew Field Constructions -- 1. Rings and their fields of fractions -- 2. Skew polynomial rings and power series rings -- 3. Finite skew field extensions and applications -- 4. Localization -- 5. Coproducts of fields -- 6. General skew fields -- 7. Rational relations and rational identities -- 8. Equations and singularities -- 9. Valuations and orderings on skew fields. 
520 |a Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation, and a precise description of the embedding problem, is followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorem of G. M. Bergman is proved here, as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. 
650 0 |a Division rings. 
650 0 |a Algebraic fields. 
730 0 |a Cambridge EBA Collection 
776 0 8 |i Print version:   |z 9780521432177 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 57. 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9781139087193  |z CONNECT  |t 0 
907 |a 3902226  |b 08-25-20  |c 03-18-19 
998 |a wi  |b 08-25-20  |c m  |d z   |e -  |f eng  |g enk  |h 0  |i 2 
999 f f |i 3703b415-21de-4afe-93c6-238109b4b46e  |s 5010b4bb-a3b6-41e1-8524-9a5eac07996e  |t 0 
952 f f |t 1  |e QA251.5 .C633 1995  |h Library of Congress classification 
856 4 0 |t 0  |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9781139087193  |z CONNECT