Galois fields and Galois rings made easy /

Saved in:
Bibliographic Details
Main Author: Kibler, Maurice (Author)
Format: eBook
Language:English
Published: Amsterdam : Elsevier, 2017.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 03515cam a2200553Mi 4500
001 mig00005041017
003 OCoLC
005 20180829051551.7
006 m o d
007 cr |||||||||||
008 170609s2017 ne o 000 0 eng d
019 |a 1004739054  |a 1004830792 
020 |a 9780081023518  |q (ePub ebook) 
020 |a 0081023510  |q (ePub ebook) 
020 |z 9781785482359  |q (hbk.) 
020 |z 1785482351 
035 |a (OCoLC)1005607910  |z (OCoLC)1004739054  |z (OCoLC)1004830792 
035 0 0 |a ocm00000001wrldshron1005607910 
037 |a 9780081023518  |b Ingram Content Group 
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d OPELS  |d GZM  |d MERER  |d OCLCF  |d OCLCO  |d GZM  |d OCLCQ  |d UPM  |d OCLCQ  |d OCL  |d D6H  |d U3W  |d EZ9 
049 |a TXMM 
050 4 |a QA214 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.32  |2 23 
099 |a Electronic book 
100 1 |a Kibler, Maurice,  |e author. 
245 1 0 |a Galois fields and Galois rings made easy /  |c Maurice Kibler. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a The Structures of Ring and Field Galois Fields Galois Rings Mutually Unbiased Bases Appendix on Number Theory and Group Theory. 
506 |a Owing to Legal Deposit regulations this resource may only be accessed from within National Library of Scotland on library computers. For more information contact enquiries@nls.uk.  |5 StEdNL 
588 0 |a CIP data; resource not viewed. 
505 0 |a Front Cover; Dedication ; Galois Fields and Galois Rings Made Easy; Copyright ; Contents; Acknowledgments; Preface; List of Mathematical Symbols; Sets; Numbers; Matrices; Groups; Rings; Fields; 1. The Structures of Ring and Field; 1.1. Rings; 1.2. Fields; 2. Galois Fields; 2.1. Generalities; 2.2. Extension of a field: a typical example; 2.3. Extension of a field: the general case; 2.4. Sub-field of a Galois field; 2.5. Factorizations; 2.6. The application trace for a Galois field; 2.7. Bases of a Galois field; 2.8. Characters of a Galois field; 2.9. Gaussian sums over Galois fields. 
505 8 |a 3. Galois Rings3.1. Generalities; 3.2. Construction of a Galois ring; 3.3. Examples and counter-examples of Galois rings; 3.4. The application trace for a Galois ring; 3.5. Characters of a Galois ring; 3.6. Gaussian sums over Galois rings; 4. Mutually Unbiased Bases; 4.1. Generalities; 4.2. Quantum angular momentum bases; 4.3. SU(2) approach to mutually unbiased bases; 4.4. Galois field approach to mutually unbiased bases; 4.5. Galois ring approach to mutually unbiased bases; 5. Appendix on Number Theory and Group Theory; 5.1. Elements of number theory; 5.2. Elements of group theory. 
504 |a Includes bibliographical references and index. 
650 0 |a Galois theory. 
650 0 |a Rings (Algebra) 
730 0 |a Elsevier ScienceDirect EBA 
776 0 8 |i Print version :  |z 9781785482359 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://www.sciencedirect.com/science/book/9781785482359  |z CONNECT  |t 0 
907 |a 3743492  |b 07-06-20  |c 08-30-18 
998 |a wi  |b 08-30-18  |c m  |d z   |e -  |f eng  |g ne   |h 0  |i 1 
994 |a 92  |b TXM 
999 f f |i 9d47da43-9d51-4d0e-bafc-1f99f0701073  |s b72eeb87-6a18-4ada-a0a5-07470d066925  |t 0 
952 f f |t 1  |e QA214  |h Library of Congress classification 
856 4 0 |t 0  |u https://ezproxy.mtsu.edu/login?url=https://www.sciencedirect.com/science/book/9781785482359  |z CONNECT