|
|
|
|
LEADER |
02000cam a2200349 a 4500 |
001 |
mig00004531268 |
005 |
20011116131325.0 |
008 |
990601s1999 nyu b 001 0 eng d |
020 |
|
|
|a 1560726709
|
035 |
|
|
|a (OCoLC)ocm41464252
|
035 |
0 |
0 |
|a ocm41464252
|
040 |
|
|
|a TEF
|c TEF
|d ILU
|d GZQ
|
049 |
|
|
|a TXMM
|
090 |
|
|
|a QA251.3
|b .R67 1999
|
092 |
|
|
|a 512.24
|b R71f
|
100 |
1 |
|
|a Rosales, J. C.
|
245 |
1 |
0 |
|a Finitely generated commutative monoids /
|c J.C. Rosales and P.A. García-Sánchez.
|
260 |
|
|
|a Commack, N.Y. :
|b Nova Science Publishers,
|c c1999.
|
300 |
|
|
|a xii, 185 p. ;
|c 27 cm.
|
504 |
|
|
|a Includes bibliographical references (p. 171-173) and indexes.
|
505 |
0 |
|
|a 1. Basic definitions and results -- 2. Finitely generated commutative groups -- 3. Finitely generated cancellative monoids -- 4. Minkowski-Farkas' lemma and its application to monoids -- 5. Finitely generated monoids are finitely presented -- 6. The word problem for monoids -- 7. Nonnegative integer solutions of systems of linear equations -- 8. Computing presentations of finitely cancellative monoids -- 9. Minimal presentations of finitely generated cancellative reduced monoids -- 10. Numerical semigroups -- 11. Projections of congruences -- 12. Finite torsion free monoids -- 13. Archimedean components -- 14. Separative monoids.
|
650 |
|
0 |
|a Monoids.
|
650 |
|
0 |
|a Commutative algebra.
|
650 |
|
0 |
|a Semigroups.
|
700 |
1 |
|
|a García-Sánchez, P. A.
|
907 |
|
|
|a 1438204
|b 07-17-10
|c 05-24-10
|
998 |
|
|
|a w
|b 05-24-10
|c m
|d a
|e -
|f eng
|g nyu
|h 0
|i 1
|
935 |
|
|
|a 538091
|
994 |
|
|
|a E0
|b TXM
|
945 |
|
|
|a 512.24
|b R71f
|g 1
|i 33082013821128
|j 0
|l w3
|o -
|p $0.00
|q -
|r -
|s -
|t 0
|u 0
|v 0
|w 0
|x 0
|y .i17680918
|z 05-25-10
|
999 |
f |
f |
|i 40efa4a5-430b-4844-b5cb-a3b2823f70e2
|s c05b04c1-56a1-492e-9609-68fa77369345
|t 0
|
952 |
f |
f |
|a Middle Tennessee State University
|b Main
|c James E. Walker Library
|d Main Collection - Walker Library - 3rd Floor
|t 0
|e 512.24 R71f
|h Library of Congress classification
|i Book
|m 33082013821128
|n 1
|