Chitosan based biomaterials. Volume 1, Fundamentals. /

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or...

Full description

Saved in:
Bibliographic Details
Other Authors: Jennings, J. Amber (Editor), Bumgardner, Joel D. (Editor)
Format: Electronic eBook
Language:English
Published: Amsterdam : Woodhead Publishing, [2017]
Series:Woodhead Publishing series in biomaterials ; no. 122.
Subjects:
Online Access:CONNECT

MARC

LEADER 00000cam a2200000 i 4500
001 in00006560139
006 m o d
007 cr cnu---unuuu
008 160929s2017 ne ob 001 0 eng d
005 20240708135816.2
035 |a 1WRLDSHRocn959554594 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d IDEBK  |d OPELS  |d OCLCF  |d MERER  |d KNOVL  |d OTZ  |d COO  |d STF  |d OCLCO  |d OCLCQ  |d U3W  |d D6H  |d CEF  |d RRP  |d VLY  |d S2H  |d OCLCO  |d ABC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SFB  |d SXB 
019 |a 1162368389  |a 1227398001 
020 |a 9780081002575  |q (electronic bk.) 
020 |a 0081002572  |q (electronic bk.) 
020 |z 9780081002308 
020 |z 0081002300 
035 |a (OCoLC)959554594  |z (OCoLC)1162368389  |z (OCoLC)1227398001 
050 4 |a TP248.65.C55 
082 0 4 |a 660.6/3  |2 23 
049 |a TXMM 
245 0 0 |a Chitosan based biomaterials.  |n Volume 1,  |p Fundamentals. /  |c edited by J. Amber Jennings, Joel D. Bumgardner. 
264 1 |a Amsterdam :  |b Woodhead Publishing,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing series in biomaterials ;  |v number 122 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource, title from PDF title page (EBSCO, viewed October 4, 2016) 
520 |a Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials. 
505 0 |a Front Cover -- Chitosan Based Biomaterials, Volume 1 -- Related titles -- Chitosan Based Biomaterials: Volume 1: Fundamentals -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Biomaterials -- One -- Fundamentals of chitosan for biomedical applications -- 1 -- Fundamentals of chitosan for biomedical applications -- 1.1 Introduction -- 1.1.1 Production/processing of chitin and chitosan -- 1.2 Chemical and biological properties of chitosans -- 1.2.1 Chemical properties -- 1.2.2 Biological properties -- 1.3 Modification of chitosans -- 1.3.1 Chemical modifications of chitosan -- 1.3.1.1 Blending or chemical linkages of chitosan with synthetic biopolymers -- 1.3.1.2 Chemical grafting of chitosan -- 1.3.1.3 Enzymatic grafting of chitosan -- 1.4 Some chitosan derivatives -- 1.4.1 O- and N-carboxymethylchitosan -- 1.4.2 Quaternized chitosan -- 1.4.3 Sugar-modified chitosan -- 1.4.4 Alkyl chitosans -- 1.4.5 Carbohydrate-branched chitosan -- 1.4.6 Polyethylene-grafted chitosans -- 1.4.7 Cyclodextrin-linked chitosans -- 1.5 Biomedical applications of chitosan and chitosan derivatives -- 1.5.1 Chitosan and its derivatives in drug delivery applications -- 1.5.2 Chitosan and its derivatives in tissue engineering applications -- 1.5.3 Chitosan and its derivatives in enzyme immobilizations for biosensing -- 1.6 Conclusion and perspectives -- References -- 2 -- Antibacterial properties of chitosan -- 2.1 Introduction -- 2.2 Antibacterial activity -- 2.2.1 Antibacterial mechanisms of chitosan -- 2.3 Chitosan derivatives and their bactericidal activity -- 2.3.1 Graft polymerization of chitosan -- 2.3.2 Quarternization of chitosan -- 2.3.3 Carboxylated chitosan derivatives -- 2.3.4 Chitosan derivatives with sulfonyl groups -- 2.3.5 Chitosan hydrogels -- 2.3.6 Chitosan films -- 2.3.7 Chitosan nanoparticles -- 2.4 Concluding remarks. 
505 8 |a 5.3 Methods for determination of degree of deacetylation -- 5.3.1 Fourier transform infrared spectroscopy (FTIR) -- 5.3.2 1H-NMR spectroscopy -- 5.3.3 UV spectrophotometric analysis -- 5.3.4 Potentiometric titration -- 5.3.5 Acid-base titration -- 5.3.5.1 Experimental procedure -- 5.3.6 Elemental analysis -- 5.3.7 Capillary zone electrophoresis method -- 5.3.8 Raman spectroscopy -- 5.4 Conclusions -- Acknowledgment -- References -- 6 -- Modifying the molecular weight of chitosan -- 6.1 Introduction -- 6.2 Merits of chitosan molecular weight modification -- 6.3 Methods of degradation of the molecular weight of chitosan -- 6.4 Mechanical degradation methods for modifying molecular weight -- 6.4.1 Shearing method -- 6.4.2 Ultrasonication method -- 6.4.3 Microfluidization method -- 6.5 Factors affecting degradation rate -- 6.5.1 Solution concentration -- 6.5.2 Reaction temperature -- 6.5.3 Type of solvent -- 6.5.4 Reaction time -- 6.5.5 Effect of the degree of deacetylation of chitosan used on degradation rate -- 6.6 Methods for increasing degradation rate -- 6.6.1 Use of concurrent ultrafiltration treatment -- 6.6.2 Use of the highest concentration solution -- 6.6.3 Two-stage microfluidization combined with ultrafiltration treatment -- 6.6.4 Combining shearing/ultrafiltration treatment at 50°C and ultrasonic or microfluidization/ultrafiltration treatment at 30°C... -- 6.7 Fractionation -- 6.7.1 Regeneration (precipitation) -- 6.7.2 Supercritical carbon dioxide -- 6.8 Summary -- References -- 7 -- Controlling chitosan degradation properties in vitro and in vivo -- 7.1 Background -- 7.2 Host response to degradable chitosan biomaterials -- 7.2.1 Hydrolysis (nonenzymatic) -- 7.2.2 Enzymatic degradation -- 7.2.3 Oxidative degradation -- 7.3 Effects of chitosan properties on degradation -- 7.3.1 Size and shape of implant -- 7.3.2 Degree of deacetylation. 
505 8 |a 7.3.3 Molecular weight -- 7.3.4 Weight percent and blends -- 7.3.5 Neutralization and cross-linking -- 7.4 Processing methods to reduce molecular weight -- 7.4.1 Enzymatic -- 7.4.2 Oxidative -- 7.4.3 High energy -- 7.4.4 Composites and postfabrication treatments -- 7.5 Experimental methods section -- 7.5.1 Enzymatic degradation -- 7.5.2 Oxidative degradation -- 7.5.3 Determination of molecular weight of polymer chains after degradation -- 7.5.4 Measuring degradation rate in vivo -- 7.6 Conclusions -- Acknowledgment -- References -- Three -- Production techniques for chitosan-based biomaterials -- 8 -- Production of micro- and nanoscale chitosan particles for biomedical applications -- 8.1 Introduction -- 8.2 Chitosan micro- and nanoparticle preparation methods -- 8.2.1 Emulsification and covalent cross-linking -- 8.2.2 Emulsification and ionic cross-linking -- 8.2.3 Emulsification and solvent evaporation -- 8.2.4 Emulsion-droplet coalescence -- 8.2.5 Ionic gelation -- 8.2.6 Polyelectrolyte complexes -- 8.2.7 Precipitation method -- 8.2.8 Spray drying method -- 8.2.9 Electrospray ionization -- 8.2.10 Chemical modification -- 8.3 Conclusions -- Acknowledgment -- References -- 9 -- Production of electrospun chitosan for biomedical applications -- 9.1 Introduction -- 9.2 Challenges and success in electrospinning of chitosan -- 9.2.1 Electrospinning working principle -- 9.2.2 Solution and rheological properties of chitosan -- 9.2.3 Electrospinning of pure chitosan -- 9.2.4 Electrospinning of chitosan with other polymers -- 9.2.5 Selection of solvents -- 9.2.6 Selection of chitosan salts -- 9.3 Production of electrospun nanofiber from chitin to chitosan -- 9.4 Fiber collections: random and aligned fibers -- 9.5 Physical-chemical properties of nanofibers -- 9.5.1 Strength of nanofibers -- 9.5.2 Cross-linking techniques -- 9.5.3 Microbial characteristics. 
505 8 |a 9.6 Biomedical application of chitosan fibers -- 9.6.1 Tissue engineering -- 9.6.2 Drug delivery -- 9.6.3 Wound dressing -- 9.6.4 Implant coatings -- 9.7 Fabrication method -- 9.7.1 Materials -- 9.7.1.1 Polymers and solvent -- 9.7.1.2 Fabrication -- 9.7.2 Methods -- 9.7.2.1 Solution preparation of PCL and chitosan -- 9.7.2.2 Preparation of 80/20 (PCL/LMW-CS) solutions -- 9.7.2.3 Electrospinning of polyblended PCL/LMW-CS solutions -- 9.8 Conclusion -- References -- 10 -- Lyophilized chitosan sponges -- 10.1 Background -- 10.2 Drug delivery -- 10.3 Tissue engineering -- 10.4 Basics of lyophilization -- 10.5 Experimental methods section -- 10.5.1 Fabricating lyophilized sponges -- 10.5.1.1 Chitosan solution preparation -- 10.5.1.2 Lyophilization -- 10.5.1.3 Optional neutralization and secondary lyophilization -- 10.5.1.4 Post-processing steps -- 10.6 Conclusions -- References -- 11 -- Production of chitosan coatings on metal and ceramic biomaterials -- 11.1 Introduction -- 11.2 Important chitosan properties for the generation of surface coatings -- 11.3 Methods to improve chitosan coating adhesion -- 11.3.1 Surface functionalization of substrates by silane-based treatment -- 11.3.2 Conversion coatings -- 11.3.3 Dielectric barrier discharge plasma -- 11.4 Methods of chitosan coatings on metals -- 11.4.1 Passive coating methods -- 11.4.1.1 Freeze-drying -- 11.4.1.2 Impregnation -- 11.4.1.3 Spread casting -- 11.4.1.4 Drop casting -- 11.4.1.5 Spin coating -- 11.4.1.6 Electrospinning -- Reagents -- Materials and equipment -- Solution preparation -- Electrospinning procedure -- 11.4.1.7 Electrospray deposition -- 11.4.2 Electrostatic methods -- 11.4.2.1 Layer-by-layer -- Reactants -- Concentrations of solutions needed to assemble polysaccharide layers -- Procedure -- 11.4.2.2 Electrolytic deposition -- 11.4.2.3 Electrophoretic deposition. 
500 |a ScienceDirect eBook - Materials Science 2016  |5 TMurS 
650 0 |a Chitosan  |x Biotechnology. 
650 0 |a Tissue engineering. 
650 0 |a Chitosan  |x Therapeutic use. 
700 1 |a Jennings, J. Amber  |q (Jessica Amber),  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjrKBBKWJyqC6Gx7MFYmJP 
700 1 |a Bumgardner, Joel D.,  |e editor. 
730 0 |a WORLDSHARE SUB RECORDS 
758 |i has work:  |a Fundamentals Volume 1 Chitosan based biomaterials (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFykyBcgCvwqBdPJcH47Dy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |z 0081002300 
830 0 |a Woodhead Publishing series in biomaterials ;  |v no. 122. 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://www.sciencedirect.com/science/book/9780081002308  |z CONNECT  |3 Elsevier  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s 51c33d20-c70a-44eb-9846-15a95c9612c6  |i 9c794acc-e600-464d-9437-5a6c33bd94d7  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e TP248.65.C55   |h Library of Congress classification