Fractography in Failure Analysis of Polymers /

Fractography in Failure Analysis of Polymers provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and technique...

Full description

Saved in:
Bibliographic Details
Main Authors: Hayes, Michael D. (Author), Edwards, Dale B. (Author), Shah, Anand R. (Author)
Format: Electronic eBook
Language:English
Published: Kidlington, Oxford, UK : William Andrew, an imprint of Elsevier, [2015]
Series:PDL handbook series.
Subjects:
Online Access:CONNECT
Table of Contents:
  • Front Cover
  • Fractography in Failure Analysis of Polymers
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • Acknowledgments
  • 1 Introduction
  • 1.1 Motivations
  • 1.2 What Is Fractography?
  • 1.3 Plastic Material Structure-Property Relationship
  • 1.4 Components of a Failure Investigation
  • References
  • 2 Fractography as a Failure Analysis Tool
  • 2.1 Failure Analysis Fundamentals
  • 2.1.1 Causes Versus Mechanisms
  • 2.1.2 Primary Versus Secondary Causes
  • 2.1.3 Types of Root Causes
  • 2.1.4 Defects Versus Imperfections
  • 2.1.5 Deficiencies in Design and Material Selection
  • 2.2 The Scientific Method
  • 2.2.1 Deductive Versus Inductive Reasoning and Fallacies
  • 2.3 Application of the Scientific Method
  • 2.3.1 Multidisciplinary Approach
  • 2.3.2 The Litigation Standard
  • 2.4 The Role of Fractography in Failure Analysis
  • References
  • 3 Instrumentation and Techniques
  • 3.1 Field or Site Instrumentation and Techniques
  • 3.1.1 Information Gathering
  • 3.1.2 Visual Inspection for Product Specific Information
  • 3.1.3 Visual ("Naked Eye") and Photographic Techniques
  • 3.1.4 Field Microscopy
  • 3.1.5 Photogrammetry and Digitization
  • 3.2 Microscopic Examination of Fracture Surfaces in a Laboratory
  • 3.2.1 Optical Microscopy
  • 3.2.2 Scanning Electron Microscopy
  • 3.2.2.1 Environmental SEM
  • 3.3 Consideration and Selection of Instruments in Failure Analysis
  • 3.4 Summary
  • 3.5 Regulatory Agencies
  • References
  • 4 Fractography Basics
  • 4.1 Fracture Surface Features and Interpretation
  • 4.1.1 What Failure Characteristics Are Normally Associated with This Material?
  • 4.1.2 What Is the Location and Nature of the Fracture Origin?
  • 4.1.3 Is the Fracture Surface Brittle or Ductile-How Ductile?
  • 4.1.4 Is the Fracture Surface Smooth or Rough, Dull or Glossy?
  • 4.1.5 Is Stress Whitening Present Anywhere on the Fracture Surface?
  • 4.1.6 What Is the Nature of Striations and Other Marks on the Fracture Surface-Was the Fracture Fast or Slow?
  • 4.1.7 Do the Mating Halves of the Fracture Show the Same Crack Direction?
  • 4.1.8 Is the Crack Straight or Curved?
  • 4.1.9 Are There Branches, Bifurcations, or T-Junctions of the Crack in the Part?
  • 4.1.10 Are Both SCG and Fast Fracture Areas Present on the Fracture Surface?
  • 4.1.11 Is There Any Foreign Material or Chemical Evident on the Surface?
  • 4.2 Brittle Versus Ductile Failures in Polymers
  • 4.2.1 Plane Stress and Plane Strain
  • 4.2.2 Cautions
  • 4.3 Crack Path Analysis
  • 4.4 Fracture Features
  • 4.4.1 Fracture Origin(s)
  • 4.4.2 Mirror Zone
  • 4.4.3 Mist Region
  • 4.4.4 Rib Markings/Beach Marks
  • 4.4.5 Hackles
  • 4.4.6 River Patterns or River Markings
  • 4.4.7 Wallner Lines
  • 4.4.8 Fatigue Striations
  • 4.4.8.1 Fatigue Crack Growth Versus SCG
  • 4.4.9 Conic or Parabolic Markings
  • 4.4.10 Ratchet Marks or Ledges
  • 4.5 Application of Fractography to Failure Analysis
  • References
  • 5 Long-Term Failure Mechanisms in Plastics
  • 5.1 Introduction
  • 5.2 Creep
  • 5.3 SCG/Creep Rupture
  • 5.4 Environmental Stress Cracking
  • 5.4.1 Differentiating SCG/Creep from ESC
  • 5.5 Aging, Degradation, and Surface Embrittlement
  • 5.6 Summary
  • References
  • 6 Case Studies
  • 6.1 Introduction
  • 6.2 Organization of Case Studies
  • 6.3 Case Study 1: Composite Crossbow
  • 6.3.1 Background
  • 6.3.2 Techniques/Analysis
  • 6.3.3 Conclusions
  • 6.4 Case Study 2: Showerhead Bracket
  • 6.4.1 Background
  • 6.4.2 Observations
  • 6.4.3 Failure Analysis
  • 6.4.4 Conclusions
  • 6.5 Case Study 3: Polycarbonate Axle Caps
  • 6.5.1 Background
  • 6.5.2 Observations
  • 6.5.3 Failure Analysis
  • 6.5.4 Conclusions
  • 6.6 Case Study 4: Hot Water Heater Drain Valve
  • 6.6.1 Background.
  • 6.6.2 Techniques and Analysis
  • 6.6.3 Conclusions
  • 6.7 Case Study 5: PEEK Coupling
  • 6.7.1 Background
  • 6.7.2 Observations
  • 6.7.3 Failure Analysis
  • 6.7.4 Conclusions
  • 6.8 Case Study 6: Icemaker Valve Failure
  • 6.8.1 Background
  • 6.8.2 Inspection
  • 6.8.2.1 Lab Examination
  • 6.8.2.2 Laser Scan of Guide Plates
  • 6.8.3 Failure Analysis
  • 6.8.4 Conclusions
  • 6.9 Case Study 7: Automotive Part, ABS
  • 6.9.1 Background
  • 6.9.2 Techniques
  • 6.9.3 Failure Analysis
  • 6.9.4 Conclusions
  • 6.10 Case Study 8: Seat Belt
  • 6.10.1 Background
  • 6.10.2 Techniques
  • 6.10.3 Failure Analysis
  • 6.10.4 Conclusions
  • 6.11 Case Study 9: Automotive Part, PC/ABS
  • 6.11.1 Background
  • 6.11.2 Techniques
  • 6.11.3 Failure Analysis
  • 6.11.4 Conclusions
  • 6.12 Case Study 10: CPVC Cover Plate
  • 6.12.1 Background
  • 6.12.2 Techniques
  • 6.12.3 Failure Analysis
  • 6.12.4 Conclusions
  • 6.13 Case Study 11: XLPE Storage Tank for Sulfuric Acid Storage
  • 6.13.1 Background
  • 6.13.2 Techniques
  • 6.13.3 Failure Analysis
  • 6.13.4 Conclusions
  • 6.14 Case Study 12: Oxidation Failure of HDPE Pipe in Water Service
  • 6.14.1 Background
  • 6.14.2 Techniques
  • 6.14.3 Failure Analysis
  • 6.14.4 Conclusions
  • 6.15 Case Study 13: Washing Machine Hose Failure
  • 6.15.1 Background
  • 6.15.2 Observations
  • 6.15.3 Failure Analysis
  • 6.15.4 Conclusions
  • 6.16 Case Study 14: Polyacetal Crimp Fittings
  • 6.16.1 Background
  • 6.16.2 Techniques
  • 6.16.3 Failure Analysis
  • 6.16.4 Conclusions
  • 6.17 Case Study 15: PVC Water Main
  • 6.17.1 Background
  • 6.17.2 Techniques and Analysis
  • 6.17.3 Conclusions
  • 6.18 Case Study 16: SAN Battery Cases
  • 6.18.1 Background
  • 6.18.2 Observations
  • 6.18.3 Failure Analysis
  • 6.18.4 Conclusions
  • 6.19 Case Study 17: Flame-Retarded Thermoformed PPE-PS
  • 6.19.1 Background
  • 6.19.2 Techniques
  • 6.19.3 Failure Analysis.
  • 6.19.4 Conclusions
  • 6.20 Case Study 18: 8-in. PVC Pipe
  • 6.20.1 Background
  • 6.20.2 Techniques
  • 6.20.3 Failure Analysis
  • 6.20.4 Conclusions
  • 6.21 Case Study 19: Railcar Part, PPE+PS, 20% Glass Filled
  • 6.21.1 Background
  • 6.21.2 Techniques
  • 6.21.3 Failure Analysis
  • 6.21.4 Conclusions
  • 6.22 Case Study 20: 48-in. HDPE Pipe
  • 6.22.1 Background
  • 6.22.2 Techniques
  • 6.22.3 Failure Analysis
  • 6.22.4 Conclusions
  • 6.23 Case Study 21: HDPE Liner Pipe Used in a High-Pressure Steel Pipeline
  • 6.23.1 Background
  • 6.23.2 Mechanical Testing
  • 6.23.3 Failure Analysis
  • 6.23.4 Conclusions
  • References
  • 7 Epilogue
  • 7.1 Failure Prevention
  • Index.