75th anniversary of the transistor /

"A transistor is a miniature semiconductor that regulates or controls current or voltage flow in addition amplifying and generating these electrical signals and acting as a switch/gate for them. Typically, transistors consist of three layers, or terminals, of a semiconductor material, each of w...

Full description

Saved in:
Bibliographic Details
Other Authors: Nathan, Arokia, 1957- (Editor), Saha, Samar K. (Editor), Todi, Ravi M. (Editor)
Format: Electronic eBook
Language:English
Published: Hoboken, New Jersey : Wiley, [2023]
Subjects:
Online Access:CONNECT
Table of Contents:
  • Editor Biography xiii
  • Preface xv
  • 1 The First Quantum Electron Device 1 Leo Esaki
  • 2 IEEE Electron Devices Society: A Brief History 3 Samar K. Saha
  • 2.1 Introduction 3
  • 2.2 Origins of EDS 4
  • 2.3 Growth of EDS 6
  • 2.4 Publications 10
  • 2.5 Conferences 12
  • 2.6 Awards and Recognition 14
  • 2.7 Conclusion 14
  • 3 Did Sir J.C. Bose Anticipate the Existence of p- and n-Type Semiconductors in His Coherer/Detector Experiments? 17 Prasanta Kumar Basu
  • 3.1 Introduction 17
  • 3.2 J.C. Bose: A Brief Biography 18
  • 3.3 Bose's Work on Detectors 19
  • 3.4 Mott's Remark 21
  • 3.5 Understanding Semiconductors and Doping 21
  • 3.6 Interpretation of Mott's Remark 23
  • 3.7 Conclusion 25
  • 4 The Point-Contact Transistor: A Revolution Begins 29 John M. Dallesasse and Robert B. Kaufman
  • 4.1 Introduction 29
  • 4.2 Background and Motivation 30
  • 4.3 Inventors' Understanding How a Point-Contact Transistor Operates 31
  • 4.4 Recreating the Point-Contact Transistor 33
  • 4.5 Concluding Remarks 40
  • 5 On the Shockley Diode Equation and Analytic Models for Modern Bipolar Transistors 43 T. H. Ning
  • 5.1 Introduction 43
  • 5.2 Adaptation of Shockley Diode Equation to Modern Bipolar Transistors 45
  • 5.3 Modern Bipolar Transistors Structures 46
  • 5.4 Analytic Models for Modern Bipolar Transistors 48
  • 5.5 Discussion 49
  • 6 Junction-Less Field Effect Transistors: The First Transistor to be Conceptualized 51 Mamidala Jagadesh Kumar and Shubham Sahay
  • 6.1 Introduction 51
  • 6.2 Structure and Operation 52
  • 6.3 Salient Features of JLFETs 55
  • 6.4 Challenges for JLFETs 58
  • 6.5 Unconventional Applications of JL Architecture 59
  • 6.6 Conclusions 61
  • 7 The First MOSFET Design by J. Lilienfeld and a Long Journey to Its Implementation 65 Hiroshi Iwai
  • 7.1 Introduction 65
  • 7.2 Demand for the Development of the Solid-State Amplifier and Its Difficulty 66
  • 7.3 Grid-Inserted MESFETs 68
  • 7.4 Lilienfeld Patents for the MESFET and MOSFET 69
  • 7.5 Necessary Conditions for Successful MOSFET Operation, and MOSFET Development Chronology 72
  • 7.6 Status of the Semiconductor Physics at the Lilienfeld Period (in the 1920s) and Thereafter 73
  • 7.7 Improvement of Si and Ge Material Quality and Discovery of the pn Junction in the 1940s 74
  • 7.8 H. Welker's MISFET with Inversion Channel in 1945 75
  • 7.9 Shockley's Group Study for MOSFET from 1945 to 1947 76
  • 7.10 Technology Development in the 1950s Until the Successful MOSFET Operation in 1960 79
  • 7.11 Success of MOSFET Operation by D. Kahng and M. Attala in 1960 81
  • 7.12 After the First Successful Operation of the MOSFET 82
  • 7.13 Summary and Conclusions 82
  • 8 The Invention of the Self-Aligned Silicon Gate Process 89 Robert E. Kerwin
  • 9 The Application of Ion Implantation to Device Fabrication: The Early Days 95 Alfred U. MacRae
  • 9.1 Introduction 95
  • 9.2 Device Fabrication 96
  • 9.3 Summary 99
  • 10 Evolution of the MOSFET: From Microns to Nanometers 101 Yuan Taur
  • 10.1 Introduction 101
  • 10.2 The Early Days: Before 1980 102
  • 10.3 From 1980 to 2000 103
  • 10.4 The Latest: After 2000 109
  • 10.5 Conclusion 113
  • 11 The SOI Transistor 115 Sorin Cristoloveanu
  • 11.1 The Beginnings 115
  • 11.2 The Renaissance 116
  • 11.3 The Smart-Cut Dynasty 119
  • 11.4 Special Mechanisms in FD-SOI MOSFET 122
  • 11.5 A Selection of Innovating Devices 126
  • 11.6 The Future 130
  • 12 FinFET: The 3D Thin-Body Transistor 135 Chenming Hu
  • 12.1 The Show Stopper 135
  • 12.2 The Cause of the Power Crises 135
  • 12.3 The Real Cause of the Power Crises 137
  • 12.4 A DARPA Request for Proposal 138
  • 12.5 The Challenges and Team Work 139
  • 12.6 Further Advancements by Industry 141
  • 12.7 Conclusion 144
  • 13 Historical Perspective of the Development of the FinFET and Process Architecture 145 Digh Hisamoto
  • 13.1 Introduction 145
  • 13.2 Requirements for the End of CMOS Scaling 146
  • 13.3 Restrictions of Planar Process Technology 148
  • 13.4 Prompted Device/Process Technology Evolution by FinFET 151
  • 13.5 Conclusion 152
  • 14 The Origin of the Tunnel FET 155 Gehan A. J. Amaratunga
  • 14.1 Background 155
  • 14.2 Conception 156
  • 14.3 Realization 157
  • 14.4 Relevance 159
  • 14.5 Prospects 159
  • 15 Floating-Gate Memory: A Prime Technology Driver of the Digital Age 163 S. M. Sze
  • 15.1 Introduction 163
  • 15.2 The Charge-Storage Concept 164
  • 15.3 Early Device Structures 167
  • 15.4 Multi-Level Cells and 3D Structures 169
  • 15.5 Applications 171
  • 15.6 Scaling Challenges 173
  • 15.7 Alternative Structures 174
  • 15.8 Conclusion 175
  • 16 Development of ETOX NOR Flash Memory 179 Stefan K. Lai
  • 16.1 Introduction 179
  • 16.2 Background 179
  • 16.3 Not the Perfect Solution 181
  • 16.4 ETOX Development Challenges 182
  • 16.5 Building a Business 183
  • 16.6 Closing Words 184
  • 17 History of MOS Memory Evolution on DRAM and SRAM 187 Mitsumasa Koyanagi
  • 17.1 Introduction 187
  • 17.2 Revolutionary Technologies in DRAM History 187
  • 17.3 Revolutionary Technologies in SRAM History 202
  • 17.4 Summary 210
  • 18 Silicon-Germanium Heterojunction Bipolar Transistors: A Retrospective 215 Subramanian S. Iyer and John D. Cressler
  • 18.1 Introduction (JDC) 215
  • 18.2 Some History from Early Days at IBM Research (SSI) 218
  • 18.3 SiGe Epitaxy and Making the First SiGe Transistor (SSI) 221
  • 18.4 MBE vs. UHV/CVD vs. APCVD for SiGe epi (SSI) 224
  • 18.5 Putting Physics to Work - The Properties of SiGe HBTs (JDC) 225
  • 18.6 SiGe BiCMOS: Devices to Circuits to Systems (JDC and SSI) 228
  • 18.7 Using SiGe in Extreme Environments (JDC) 231
  • 18.8 New Directions (JDC and SSI) 234
  • 18.9 Some Parting Words (SSI) 235
  • 19 The 25-Year Disruptive Path of InP/GaAsSb Double Heterojunction Bipolar Transistors 239 Colombo R. Bolognesi
  • 19.1 Introduction 239
  • 19.2 Phase I: Simon Fraser Years (1995-2006) 242
  • 19.3 Phase II: ETH Years (2006-2022) 246
  • 19.4 Response to Innovation 248
  • 19.5 Final Words 249
  • 20 The High Electron Mobility Transistor: 40 Years of Excitement and Surprises 253 Jesús A. del Alamo
  • 20.1 Introduction 253
  • 20.2 HEMT Electronics 254
  • 20.3 Modulation-Doped Structures in Physics 257
  • 20.4 Exciting Prospects 258
  • 20.5 Conclusions 259
  • 21 The Thin Film Transistor and Emergence of Large Area, Flexible Electronics and Beyond 263 Yue Kuo, Jin Jang, and Arokia Nathan
  • 21.1 Birth of Large Area Electronics 263
  • 21.2 Polycrystalline Silicon and Oxide Thin Film Transistor 265
  • 21.3 Trends in TFT Development 266
  • 22 Imaging Inventions: Charge-Coupled Devices 273 Michael F. Tompsett
  • 22.1 Setting the Stage for the Invention of the Charge-Coupled Device (CCD) 273
  • 22.2 The Invention of the CCD 274
  • 22.3 Verifying the CCD Concept 275
  • 22.4 The Invention of CCD Imagers 276
  • 22.5 The First Solid-State Color TV Camera 276
  • 22.6 Mixed Analog Design Modem Chip 278
  • 23 The Invention and Development of CMOS Image Sensors: A Camera in Every Pocket 281 Eric R. Fossum
  • 23.1 Introduction 281
  • 23.2 Underlying Technology 282
  • 23.3 Early Solid-State Image Sensors 283
  • 23.4 Invention of CMOS Image Sensors 285
  • 23.5 Photon-Counting CMOS Image Sensors 288
  • 23.6 Conclusion 290
  • 24 From Transistors to Microsensors: A Memoir 293 Henry Baltes
  • 24.1 Early Encounters 293
  • 24.2 Integration 293
  • 24.3 Silicon Sensors 294
  • 24.4 Transistor Sensors 294
  • 24.5 CMOS End Fabrication 296
  • 24.6 Outlook 297
  • 25 Creation of the Insulated Gate Bipolar Transistor 299 B. Jayant Baliga
  • 25.1 Introduction 299
  • 25.2 Historical Context 300
  • 25.3 The Brock Effect 301
  • 25.4 My IGBT Proposal 301
  • 25.5 The Welch Edict 301
  • 25.6 Manufacturing the First IGBT Product 302
  • 25.7 First IGBT Product Release 303
  • 25.8 IGBT Technology Enhancement 304
  • 25.9 IGBT Evolution 305
  • 25.10 IGBT Applications 306
  • 25.11 IGBT Social Impact 306
  • 25.12 My Sentiments 307
  • 26 The History of Noise in Metal-Oxide-Semiconductor Field-Effect Transistors 309 Renuka P.
  • Jindal
  • 26.1 Introduction 309
  • 26.2 MOSFET Noise Time Line 310
  • 26.3 Channel Thermal Noise 311
  • 26.4 Induced Gate and Substrate Current Noise 311
  • 26.5 Gate-Drain Current Noise Cross Correlation 312
  • 26.6 Equilibrium Noise 312
  • 26.7 Bulk Charge Effects 312
  • 26.8 Gate Resistance Noise 313
  • 26.9 Substrate Resistance Noise 313
  • 26.10 Substrate and Gate Current Noise 313
  • 26.11 Short-Channel Effects 314
  • 26.12 Effect on Channel Thermal Noise 315
  • 26.13 1/f Noise 316
  • 26.14 Conclusions 316
  • 27 A Miraculously Reliable Transistor: A Short History 323 Muhammad Ashraful Alam and Ahmed Ehteshamul Islam
  • 27.1 Introduction: A Transistor is Born 323
  • 27.2 Transistor Reliability in the Proto-Scaling Era 325
  • 27.3 Reliability of Geometric-and Equivalent-Scaling Eras 325
  • 27.4 Conclusions: Reliability Challenges for the Hyper-Scaling and Functional-Scaling Eras 330
  • 28 Technology Computer-Aided Design: A Key Component of Microelectronics' Development 337 Siegfried Selberherr and Viktor Sverdlov
  • 28.1 Introduction 337
  • 28.2 Short History 338
  • 28.3 Scaling and Model Complexity 339
  • 28.4 MINIMOS Commercialization and Beyond 342
  • 28.5 Design Technology Co-Optimization at Advanced Nodes 343
  • 28.6 Electron Spin for Microelectronics 343
  • 28.7 Summary and Outlook 344
  • 29 Early Integrated Circuits 349 Willy Sansen
  • 30 A Path to the One-Chip Mixed-Signal SoC for Digital Video Systems 355 Akira Matsuzawa
  • 30.1 Introduction 355
  • 30.2 Bipolar ADCs at Early Development Stage of Digital TVs 356
  • 30.3 A CMOS ADC for Digital Handy Camcorder 360
  • 30.4 One-Chip Mixed-Signal SoC for DVD 363
  • 31 Historical Perspective of the Nonvolatile Memory and Emerging Computing Paradigms 369 Ming Liu
  • 31.1 Introduction 369
  • 31.2 Rise of Solid-State Nonvolatile Memory 370
  • 31.3 ...