Silicon carbide biotechnology : a biocompatible semiconductor for advanced biomedical devices and applications /

Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to fur...

Full description

Saved in:
Bibliographic Details
Other Authors: Saddow, Stephen E. (Editor)
Format: Electronic eBook
Language:English
Published: Amsterdam, Netherlands : Elsevier, 2016.
Edition:Second edition.
Subjects:
Online Access:CONNECT
Table of Contents:
  • Cover; Title Page; Copyright Page; In Memoriam; Dedication; Contents; List of contributors; Preface to Second Edition; Acknowledgments; Chapter 1
  • Silicon Carbide Materials for Biomedical Applications; 1.1
  • Preamble; 1.2
  • Introduction to the second edition; 1.3
  • Summary to the second edition; 1.4
  • Introduction to the first edition; 1.5
  • Silicon carbide
  • materials overview; 1.6
  • Silicon carbide material growth and processing; 1.6.1
  • Bulk Growth; 1.6.2
  • Thin-Film Growth; 1.6.3
  • Amorphous Silicon Carbide Coatings; 1.6.4
  • SiC Micromachining
  • 1.7
  • Silicon carbide as a biomedical material1.8
  • Summary to the first edition; Acknowledgments; References; Chapter 2
  • Cytotoxicity of 3C-SiC Investigated Through Strict Adherence to ISO 10993; 2.1
  • Introduction; 2.2
  • In vitro biomedical testing methods for cytotoxicity; 2.2.1
  • International Standards Organization (ISO) 10993; 2.2.2
  • ISO 10993-12 Control Selection and Material Preparation; 2.2.3
  • L929 Murine Fibroblastoma Cell Culture Protocol; 2.2.4
  • ISO 10993-5 Extract and Direct Contact Methods; 2.2.5
  • Results and Discussions; 2.2.6
  • A Need for More Efficient Methodologies
  • 2.3
  • Improved ISO 10993: the BAMBI method2.3.1
  • BAMBI Methodology; 2.3.2
  • BAMBI Method Results; 2.4
  • 3C-SiC in vitro evaluation; 2.4.1
  • The Advantages of 3C-SiC for Biomedical Devices; 2.4.2
  • Materials and Methods; 2.4.3
  • The BAMBI Method Cytotoxicity Testing Evaluation of 3C-SiC; 2.5
  • Summary and the future of 3C-SiC biomedical testing; Acknowledgments; References; Chapter 3
  • Study of the Hemocompatibility of 3C-SiC and a-SiC Films Using ISO 10993-4; 3.1
  • Introduction; 3.2
  • In vitro biomedical testing methods for cytotoxicity; 3.2.1
  • Testing Materials; 3.2.1.1
  • (100) Silicon
  • 3.2.1.2
  • Cubic Silicon Carbide3.2.1.3
  • Amorphous Silicon Carbide; 3.2.2
  • In vitro BAMBI Cytotoxicity Assay for a-SiC; 3.3
  • In vitro assay to assess hemocompatibility of SiC; 3.3.1
  • Hemocompatibility; 3.3.2
  • ISO 10993-4 Hemocompatibility Evaluation of SiC; 3.3.2.1
  • Chandler's Loop; 3.3.2.2
  • Platelet-Rich Plasma Preparation; 3.3.3
  • Static Hemocompatibility of SiC; 3.3.4
  • Dynamic Hemocompatibility of SiC; 3.4
  • Summary; Acknowledgments; References; Chapter 4
  • Graphene Functionalization for Biosensor Applications; 4.1
  • Introduction; 4.2
  • Production of graphene
  • 4.2.1
  • Mechanical Exfoliation of Graphite4.2.2
  • Chemical Exfoliation; 4.2.3
  • Supporting Substrates; 4.2.4
  • Chemical Vapor Deposition; 4.2.5
  • Metal Substrates; 4.2.5.1
  • Growth on Copper; 4.2.5.2
  • Roll-to-Roll Production; 4.2.5.3
  • Growth on Nickel; 4.2.6
  • CVD Growth on SiC; 4.2.7
  • Epitaxial Growth on Silicon Carbide; 4.2.7.1
  • Si- and C-Face Growth; 4.2.7.2
  • Related Growth Techniques on SiC; 4.3
  • Graphene characterization methods; 4.3.1
  • Raman Spectroscopy; 4.3.2
  • XPS; 4.3.3
  • Electrical Characterization; 4.3.4
  • Electrochemical Characterization (Electrochemistry Techniques)
  • 4.3.4.1
  • Amperometry