Solving polynomial equation systems. Volume IV, Buchberger theory and beyond /

In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Se...

Full description

Saved in:
Bibliographic Details
Main Author: Mora, Teo (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2016.
Series:Encyclopedia of mathematics and its applications ; 158.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 03527cam a2200553Ii 4500
001 in00006309797
006 m o d
007 cr mn|||||||||
008 141119t20162016enk ob 001 0 eng d
005 20230123193332.3
035 |a 1WRLDSHRocn946609910 
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d N$T  |d LGG  |d N$T  |d UIU  |d OCLCF  |d IDEBK  |d OSU  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d OCLCO 
020 |a 9781316271902  |q (electronic bk.) 
020 |a 1316271900  |q (electronic bk.) 
020 |a 9781316384985  |q (electronic bk.) 
020 |a 1316384985  |q (electronic bk.) 
020 |z 9781107109636  |q (hardback) 
020 |z 1107109639  |q (hardback) 
035 |a (OCoLC)946609910 
050 4 |a QA251.3 
082 0 4 |a 512.44  |2 23 
049 |a TXMM 
100 1 |a Mora, Teo,  |e author. 
245 1 0 |a Solving polynomial equation systems.  |n Volume IV,  |p Buchberger theory and beyond /  |c Teo Mora. 
246 3 0 |a Buchberger theory and beyond 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (xi, 820 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v 158 
520 |a In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers. 
504 |a Includes bibliographical references (pages 803-812) and index. 
505 0 |a Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere. 
588 0 |a Print version record. 
590 0 |a EBSCO eBook Academic Comprehensive Collection North America 
650 0 |a Commutative rings. 
650 0 |a Commutative algebra. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |a Mora, Teo.  |t Solving polynomial equation systems. Volume IV, Buchberger theory and beyond.  |d Cambridge : Cambridge University Press, 2016  |z 1107109639  |w (OCoLC)945641191 
830 0 |a Encyclopedia of mathematics and its applications ;  |v 158. 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925  |z CONNECT  |3 eBooks on EBSCOhost  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s d0ed38d8-4860-4353-9335-b5e93df1d230  |i 232aa6b3-3722-4751-b30d-2e4321eff169  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QA251.3   |h Library of Congress classification 
856 4 0 |3 eBooks on EBSCOhost  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925  |z CONNECT