Solid state proton conductors : properties and applications in fuel cells /

Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water...

Full description

Saved in:
Bibliographic Details
Other Authors: Knauth, Philippe, Di Vona, Maria Luisa
Format: Electronic eBook
Language:English
Published: Chicester, West Sussex : John Wiley & Sons, 2012.
Subjects:
Online Access:CONNECT

MARC

LEADER 00000nam a2200000 a 4500
001 in00006304097
006 m o d
007 cr cn|||||||||
008 120207s2012 enka ob 001 0 eng d
005 20240124155135.5
010 |z  2011037228 
020 |a 9781119962502 
020 |a 1119962501  |q (electronic bk.) 
020 |a 0470669373 
020 |a 9780470669372 
020 |a 9781119962496  |q (e-book) 
020 |a 1119962498  |q (e-book) 
024 8 |a 9786613432520 
035 |a (NhCcYBP)e80fa363d91f485b9a695405a0a7a4bb9781119962502 
035 |a 1wileyeba9781119962502 
037 |a 10.1002/9781119962502  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
040 |a NhCcYBP  |b eng  |c NhCcYBP 
050 4 |a QC176.8.E4  |b S65 2012eb 
082 0 4 |a 621.31/2429  |2 22 
245 0 0 |a Solid state proton conductors :  |b properties and applications in fuel cells /  |c edited by Philippe Knauth and Maria Luisa Di Vona. 
260 |a Chicester, West Sussex :  |b John Wiley & Sons,  |c 2012. 
300 |a 1 online resource (xvi, 410 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
500 |a Wiley EBA  |5 TMurS 
504 |a Includes bibliographical references and index. 
505 0 |a Front Matter -- Introduction and Overview: Protons, the Nonconformist Ions / Maria Luisa Di Vona, Philippe Knauth -- Morphology and Structure of Solid Acids / Habib Ghobarkar, Philippe Knauth, Oliver Sch̃f -- Diffusion in Solid Proton Conductors: Theoretical Aspects and Nuclear Magnetic Resonance Analysis / Maria Luisa Di Vona, Emanuela Sgreccia, Sebastiano Tosto -- Structure and Diffusivity in Proton-Conducting Membranes Studied by Quasielastic Neutron Scattering / Rolf Hempelmann -- Broadband Dielectric Spectroscopy: A Powerful Tool for the Determination of Charge Transfer Mechanisms in Ion Conductors / Vito Di Noto, Guinevere A Giffin, Keti Vezz̮, Matteo Piga, Sandra Lavina -- Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers / Jean-Fraṅois Chailan, Mustapha Khadhraoui, Philippe Knauth -- Modeling of Transport and Structure of Solid State Proton Conductors / Jeffrey K Clark, Stephen J Paddison -- Perfluorinated Sulfonic Acids as Proton Conductor Membranes / Giulio Alberti, Riccardo Narducci, Maria Luisa Di Vona -- Proton Conductivity of Aromatic Polymers / Baijun Liu, Michael D Guiver -- Inorganic Solid Proton Conductors / Philippe Knauth, Maria Luisa Di Vona -- Index. 
588 0 |a Print version record. 
520 |a Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Solid Proton Conductors by Nuclear Magnetic Resonance Spectroscopy Structure and Diffusivity by Quasielastic Neutron Scattering Broadband Dielectric Spectroscopy Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers Ab initio Modeling of Transport and Structure Perfluorinated Sulfonic Acids Proton-Conducting Aromatic Polymers Inorganic Solid Proton Conductors Uniquely combining both organic (polymeric) and inorganic proton conductors, Solid State Proton Conductors: Properties and Applications in Fuel Cells provides a complete treatment of research on proton-conducting materials. 
650 0 |a Solid state proton conductors. 
650 0 |a Solid state chemistry. 
650 0 |a Fuel cells. 
700 1 |a Knauth, Philippe. 
700 1 |a Di Vona, Maria Luisa. 
730 0 |a WILEYEBA 
776 0 8 |i Print version:  |t Solid state proton conductors.  |d Chichester, West Sussex : Wiley, 2012  |z 9780470669372  |w (DLC) 2011037228 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781119962502  |z CONNECT  |3 Wiley  |t 0 
880 8 |6 505-00  |a 8.4 Some Information on Dow and on Recent Aquivion® Ionomers -- 8.5 Instability of Proton Conductivity of Highly Hydrated PFSA Membranes -- 8.6 Composite Nafion Membranes -- 8.6.1 Silica-Filled Ionomer Membranes -- 8.6.2 Metal Oxide-Filled Nafion Membranes -- 8.6.3 Layered Zirconium Phosphate- and Zirconium Phosphonate-Filled Ionomer Membranes -- 8.6.4 Heteropolyacid-Filled Membranes -- 8.7 Some Final Remarks and Conclusions -- References -- 9 Proton Conductivity of Aromatic Polymers -- 9.1 Introduction -- 9.2 Synthetic Strategies of the Various Acid-Functionalized Aromatic Polymers with Proton Transport Ability -- 9.2.1 Sulfonated Poly(arylene ether)s -- 9.2.2 Sulfonated Polyimides -- 9.2.3 Other Aromatic Polymers as PEMs -- 9.3 Approaches to Enhance Proton Conductivity -- 9.3.1 Nanophase-Separated Microstructures Containing Proton-Conducting Channels -- 9.3.2 Replacement of -Ph-SO3H by -CF2 -SO3H -- 9.3.3 Synthesis of High-IEC PEMs -- 9.3.4 Composite Membranes -- 9.4 Balancing Proton Conductivity, Dimensional Stability, and Other Properties -- 9.5 Electrochemical Performance of Aromatic Polymers -- 9.5.1 PEMFC Performance -- 9.5.2 DMFC Performance -- 9.6 Summary -- References -- 10 Inorganic Solid Proton Conductors -- 10.1 Fundamentals of Ionic Conduction in Inorganic Solids -- 10.1.1 Defect Concentrations -- 10.1.2 Defect Mobilities -- 10.1.3 Kr€oger-Vink Nomenclature -- 10.1.4 Ionic Conduction in the Bulk: Hopping Model -- 10.2 General Considerations on Inorganic Solid Proton Conductors -- 10.2.1 Classification of Solid Proton Conductors -- 10.3 Low-Dimensional Solid Proton Conductors: Layered and Porous Structures -- 10.3.1 β- and β"-Alumina-Type -- 10.3.2 Layered Metal Hydrogen Phosphates -- 10.3.3 Micro- and Mesoporous Structures -- 10.4 Three-Dimensional Solid Proton Conductors: "Quasi-Liquid" Structures -- 10.4.1 Solid Acids. 
880 8 |6 505-00  |a 5 Broadband Dielectric Spectroscopy: A Powerful Tool for the Determination of Charge Transfer Mechanisms in Ion Conductors -- 5.1 Basic Principles -- 5.1.1 The Interaction of Matter with Electromagnetic Fields: The Maxwell Equations -- 5.1.2 Electric Response in Terms of ε*m(ω), σ*m(ω), and Z*m(ω) -- 5.2 Phenomenological Background of Electric Properties in a Time-Dependent Field -- 5.2.1 Polarization Events -- 5.3 Theory of Dielectric Relaxation -- 5.3.1 Dielectric Relaxation Modes of Macromolecular Systems -- 5.3.2 A General Equation for the Analysis in the Frequency Domain of σ*(ω) and ε*(ω) -- 5.4 Analysis of Electric Spectra -- 5.5 Broadband Dielectric Spectroscopy Measurement Techniques -- 5.5.1 Measurement Systems -- 5.5.2 Contacts -- 5.5.3 Calibration -- 5.5.4 Calibration in Parallel Plate Methods -- 5.5.5 Measurement Accuracy -- 5.6 Concluding Remarks -- References -- 6 Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers -- 6.1 Introduction -- 6.1.1 Molecular Configurations: The Morphology and Microstructure of Polymers -- 6.1.2 Molecular Motions -- 6.1.3 Glass Transition and Other Molecular Relaxations -- 6.2 Methodology of Uniaxial Tensile Tests -- 6.2.1 Elasticity and Young's Modulus E -- 6.2.2 Elasticity and Shear Modulus G -- 6.2.3 Elasticity and Cohesion Energy -- 6.3 Relaxation and Creep of Polymers -- 6.3.1 Stress Relaxation of Polymers -- 6.3.2 Creep of Polymers -- 6.4 Engineering Stress-Strain Curves of Polymers -- 6.4.1 True Stress-Strain Curve for Plastic Flow and Toughness of Polymers -- 6.4.2 Behavior of Composite Membranes -- 6.4.3 Behavior in the Glassy Regime -- 6.4.4 Influence of the Rate of Deformation -- 6.4.5 Effect of Temperature on Mechanical Properties -- 6.4.6 Thermal Strain -- 6.5 Stress-Strain Tensile Tests of Proton-Conducting Ionomers -- 6.5.1 Influence of Heat Treatment and Cross-Linking. 
949 |a ho0 
975 |p Wiley UBCM Online Book All Titles thru 2023 
976 |a 6006612 
998 |a wi  |d z 
999 f f |s 6c3b93de-7c70-4146-94cb-73503adf97e6  |i b8409fcf-8d35-4c7b-b428-3b14c172dae8  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QC176.8.E4 S65 2012eb  |h Library of Congress classification