Machine learning and big data : concepts, algorithms, tools and applications /

"Machine learning with big data technologies create new opportunities to understand the various data process related to medical or environmental aspects of agriculture. Machine learning as a field is now incredibly pervasive, with applications spanning from business intelligence to homeland sec...

Full description

Saved in:
Bibliographic Details
Other Authors: Dulhare, Uma N. (Editor), Ahmad, Khaleel (Editor), Khairol Amali Bin Ahmad (Editor)
Format: eBook
Language:English
Published: Hoboken, NJ : Wiley-Scrivener, 2020.
Subjects:
Online Access:CONNECT
CONNECT
LEADER 04781nam a22005411i 4500
001 in00006302855
006 m |o d |
007 cr |n|||||||||
008 230113t20202020njua ob 001 0 eng d
005 20230123155107.0
035 |a (NhCcYBP)e792ad23fda947dab6477b3838b647ec9781119654834 
035 |a 1wileyeba9781119654834 
040 |a NhCcYBP  |b eng  |e rda  |c NhCcYBP 
020 |a 9781119654834 
020 |a 1119654831 (electronic bk.) 
020 |z 9781119654742 
020 |z 1119654742 
050 4 |a Q325.5  |b .M3382 2020 
082 0 4 |a 006.3/1  |2 23 
245 0 0 |a Machine learning and big data :  |b concepts, algorithms, tools and applications /  |c edited by Uma N. Dulhare, Khaleel Ahmad and Khairol Amali Bin Ahmad. 
264 1 |a Hoboken, NJ :  |b Wiley-Scrivener,  |c 2020. 
264 4 |c ©2020 
300 |a 1 online resource (xx, 512 pages : :  |b illustrations.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Section 1: Theoretical Fundamentals -- Mathematical Foundation / Afroz and Basharat Hussain -- Theory of Probability / Parvaze Ahmad Dar and Afroz -- Correlation and Regression / Mohd. Abdul Haleem Rizwan -- Section 2: Big Data and Pattern Recognition -- Data Preprocess / Md. Sharif Hossen -- Big Data / R. Chinnaiyan -- Pattern Recognition Concepts / Ambeshwar Kumar, R. Manikandan and C. Thaventhiran -- Section 3: Machine Learning: Algorithms & Applications -- Machine Learning / Elham Ghanbari and Sara Najafzadeh -- Performance of Supervised Learning Algorithms on Multi-Variate Datasets / Asif Iqbal Hajamydeen and Rabab Alayham Abbas Helmi -- Unsupervised Learning / M. Kumara Swamy and Tejaswi Puligilla -- Semi-Supervised Learning / Manish Devgan, Gaurav Malik and Deepak Kumar Sharma -- Reinforcement Learning / Amandeep Singh Bhatia, Mandeep Kaur Saggi, Amit Sundas and Jatinder Ashta -- Application of Big Data and Machine Learning / Neha Sharma, Sunil Kumar Gautam, Azriel A. Henry and Abhimanyu Kumar -- Section 4: Machine Learning's Next Frontier -- Transfer Learning / Riyanshi Gupta, Kartik Krishna Bhardwaj and Deepak Kumar Sharma -- Section 5: Hands-On and Case Study -- Hands on MAHOUT-Machine Learning Tool / Uma N. Dulhare and Sheikh Gouse -- Hands-On H2O Machine Learning Tool / Uma N. Dulhare, Azmath Mubeen and Khaleel Ahmed -- Case Study: Intrusion Detection System Using Machine Learning / Syeda Hajra Mahin, Fahmina Taranum and Reshma Nikhat -- Inclusion of Security Features for Implications of Electronic Governance Activities / Prabal Pratap and Nripendra Dwivedi. 
520 |a "Machine learning with big data technologies create new opportunities to understand the various data process related to medical or environmental aspects of agriculture. Machine learning as a field is now incredibly pervasive, with applications spanning from business intelligence to homeland security from analyzing biochemical interactions to structural monitoring of aging bridges, and from emissions to astrophysics, etc. As we are entering the Industrial Revolution 4.0, BD/ML applications, in combination with IoT/Cloud technologies, are fundamentally changing any domain-specific industry. Development of this field is very important because it can help to enhance human life by the automation system, which in turn has far-reaching effects for economic, psychological, educational and organizational improvements to the way we work, teach, learn and care for ourselves and each other"--  |c Provided by publisher. 
588 |a Description based on print version record. 
590 |a Wiley EBA 
650 0 |a Machine learning. 
650 0 |a Big data. 
700 1 |a Dulhare, Uma N.,  |e editor. 
700 1 |a Ahmad, Khaleel,  |e editor. 
700 1 |a Khairol Amali Bin Ahmad,  |e editor. 
710 2 |a John Wiley & Sons, Ltd.,  |e publisher. 
730 0 |a WILEYEBA 
776 0 8 |i Online version:  |t Machine learning and big data  |d Hoboken, NJ : Wiley-Scrivener, 2020  |z 9781119654810  |w (DLC) 2020031698 
776 0 8 |c Original  |z 9781119654742  |z 1119654742  |w (DLC) 2020031697 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781119654834  |z CONNECT  |3 Wiley  |t 0 
949 |a ho0 
975 |p Wiley UBCM All Titles Through 2022 
976 |a 6005002 
998 |a wi  |d z 
999 f f |s d781777a-44d0-4911-ae54-7ec0e98c4155  |i 03fe1fb8-5d21-4938-89aa-be5e3bc010b5  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e Q325.5 .M3382 2020  |h Library of Congress classification 
856 4 0 |3 Wiley  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781119654834  |z CONNECT