The chemical bond : fundamental aspects of chemical bonding /

A unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the...

Full description

Saved in:
Bibliographic Details
Other Authors: Frenking, G. (Editor), Shaik, Sason S., 1943- (Editor)
Format: Electronic eBook
Language:English
Published: Weinheim : Wiley-VCH Verlag, 2014.
Edition:First edition.
Subjects:
Online Access:CONNECT

MARC

LEADER 00000nam a2200000 i 4500
001 in00006301141
006 m o d
007 cr cnu|||unuuu
008 140707s2014 gw ob 001 0 eng d
005 20240124152808.4
020 |a 9783527664696 
020 |a 3527664696  |q (electronic bk.) 
020 |a 9783527664726  |q (electronic bk.) 
020 |a 3527664726  |q (electronic bk.) 
020 |a 9783527664719 
020 |a 3527664718 
020 |a 9783527664702 
020 |a 352766470X 
020 |z 9783527333141 
020 |z 3527333142 
020 |a 9783527333158  |q (v. 2. ;  |q hbk.) 
020 |a 3527333150  |q (v. 2. ;  |q hbk.) 
024 7 |a 10.1002/9783527664696  |2 doi 
035 |a (NhCcYBP)e80fa363d91f485b9a695405a0a7a4bb9783527664696 
035 |a 1wileyeba9783527664696 
040 |a NhCcYBP  |b eng  |e rda  |c NhCcYBP 
050 4 |a QD461  |b .C44 2014 
082 0 4 |a 541.224  |2 23 
245 0 4 |a The chemical bond :  |b fundamental aspects of chemical bonding /  |c edited by Gernot Frenking and Sason Shaik. 
250 |a First edition. 
264 1 |a Weinheim :  |b Wiley-VCH Verlag,  |c 2014. 
300 |a 1 online resource (xxv, 411 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Wiley EBA  |5 TMurS 
505 0 |6 880-01  |a The Physical Origin of Covalent Bonding / Michael W Schmidt, Joseph Ivanic, Klaus Ruedenberg -- Bridging Cultures / Philippe C Hiberty, Sason Shaik -- The NBO View of Chemical Bonding / Clark R Landis, Frank Weinhold -- The EDA Perspective of Chemical Bonding / Gernot Frenking, F Matthias Bickelhaupt -- The Valence Bond Perspective of the Chemical Bond / Sason Shaik, David Danovich, Wei Wu, Philippe C Hiberty -- The Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding / Yirong Mo -- The Conceptual Density Functional Theory Perspective of Bonding / Frank De Proft, Paul W Ayers, Paul Geerlings -- The QTAIM Perspective of Chemical Bonding / Paul Lode Albert Popelier -- The Experimental Density Perspective of Chemical Bonding / Wolfgang Scherer, Andreas Fischer, Georg Eickerling -- The ELF Perspective of chemical bonding / Yuri Grin, Andreas Savin, Bernard Silvi -- Relativity and Chemical Bonding / Peter Schwerdtfeger. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (Wiley, viewed July 7, 2014). 
546 |a English. 
520 |a A unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers. 
650 0 |a Chemical bonds. 
700 1 |a Frenking, G.  |q (Gernot),  |e editor. 
700 1 |a Shaik, Sason S.,  |d 1943-  |e editor. 
730 0 |a WILEYEBA 
776 0 8 |i Print version:  |t Chemical bond.  |d Weinheim : Wiley-VCH, [2014]  |z 9783527333141 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9783527664696  |z CONNECT  |3 Wiley  |t 0 
880 0 0 |6 505-01  |g Machine generated contents note:  |g 1.  |t Physical Origin of Covalent Bonding /  |r Klaus Ruedenberg --  |g 1.1.  |t Quest for a Physical Model of Covalent Bonding --  |g 1.2.  |t Rigorous Basis for Conceptual Reasoning --  |g 1.2.1.  |t Physical Origin of the Ground State --  |g 1.2.2.  |t Physical Origin of Ground State Energy Differences --  |g 1.2.3.  |t Relation between Kinetic and Potential Energies --  |g 1.3.  |t Atoms in Molecules --  |g 1.3.1.  |t Quantitative Bonding Analyses Require Quasi-Atoms in a Molecule --  |g 1.3.2.  |t Primary and Secondary Energy Contributions --  |g 1.3.3.  |t Identification of Quasi-Atoms in a Molecule --  |g 1.4.  |t One-Electron Basis of Covalent Binding: H2+ --  |g 1.4.1.  |t Molecular Wave Function as a Superposition of Quasi-Atomic Orbitals --  |g 1.4.2.  |t Molecular Electron Density and Gradient Density as Sums of Intra-atomic and Interatomic Contributions --  |g 1.4.2.1.  |t Resolution of the Molecular Density --  |g 1.4.2.2.  |t Resolution of the Molecular Gradient Density --  |g 1.4.3.  |t Dependence of Delocalization and Interference on the Size of the Quasi-Atomic Orbitals --  |g 1.4.3.1.  |t Charge Accumulation at the Bond Midpoint --  |g 1.4.3.2.  |t Total Charge Accumulation in the Bond --  |g 1.4.3.3.  |t Origin of the Relation between Interference and Quasi-Atomic Orbital Contraction/Expansion --  |g 1.4.4.  |t Binding Energy as a Sum of Two Intra-atomic and Three Interatomic Contributions --  |g 1.4.5.  |t Quantitative Characteristics of the Five Energy Contributions --  |g 1.4.5.1.  |t Intra-atomic Deformation Energy: Eintra = Tintra + Vintra --  |g 1.4.5.2.  |t Quasi-Classical Interaction between the Atoms: Vqc --  |g 1.4.5.3.  |t Potential Interference Energy: VI --  |g 1.4.5.4.  |t Kinetic Interference Energy: TI --  |g 1.4.5.5.  |t Interference Energies and Quasi-Atomic Orbital Contraction and Expansion --  |g 1.4.6.  |t Synergism of the Binding Energy Contributions along the Dissociation Curve --  |g 1.4.6.1.  |t First Column: Zeroth Order Approximation to ψA, ψB by the 1SA, 1SB Hydrogen Atom Orbitals --  |g 1.4.6.2.  |t Second Column: Optimal Spherical Approximation to ψA, ψB by the Scaled Orbitals 1SA*, 1SB* --  |g 1.4.6.3.  |t Third Column: Exact Quasi-Atomic Orbitals ψA, ψB --  |g 1.4.6.4.  |t Conclusion --  |g 1.4.7.  |t Origin of Bonding at the Equilibrium Distance --  |g 1.4.7.1.  |t Contributions to the Binding Energy --  |g 1.4.7.2.  |t Energy Lowering By Electron Sharing --  |g 1.4.7.3.  |t Energy Lowering by Quasi-Atomic Orbital Deformation --  |g 1.4.7.4.  |t Variational Perspective --  |g 1.4.7.5.  |t General Implications --  |g 1.5.  |t Effect of Electronic Interaction in the Covalent Electron Pair Bond: H2 --  |g 1.5.1.  |t Quasi-Atomic Orbitals of the FORS Wave Function --  |g 1.5.2.  |t FORS Wave Function and Density in Terms of Quasi-Atomic Orbitals --  |g 1.5.3.  |t Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions --  |g 1.5.3.1.  |t Overall Resolution --  |g 1.5.3.2.  |t Interatomic Coulombic Contributions --  |g 1.5.3.3.  |t Interatomic Interference Contributions --  |g 1.5.3.4.  |t Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions --  |g 1.5.4.  |t Quantitative Synergism of the Contributions to the Binding Energy --  |g 1.5.4.1.  |t Quantitative Characteristics --  |g 1.5.4.2.  |t Synergism along the Dissociation Curve --  |g 1.5.5.  |t Origin of Bonding at the Equilibrium Distance --  |g 1.5.5.1.  |t Primary Mechanism as Exhibited by Choosing the Free-Atom Orbitals as Quasi-Atomic Orbitals --  |g 1.5.5.2.  |t Effect of Quasi-Atomic Orbital Contraction --  |g 1.5.5.3.  |t Effect of Polarization --  |g 1.5.5.4.  |t Binding in the Electron Pair Bond of H2 --  |g 1.5.6.  |t Electron Correlation Contribution to Bonding in H2 --  |g 1.6.  |t Covalent Bonding in Molecules with More than Two Electrons: B2, C2, N2, O2 and F2 --  |g 1.6.1.  |t Basis of Binding Energy Analysis --  |g 1.6.2.  |t Origin of Binding at the Equilibrium Geometry --  |g 1.6.3.  |t Synergism along the Dissociation Curve --  |g 1.6.4.  |t Effect of Dynamic Correlation on Covalent Binding --  |g 1.7.  |t Conclusions --  |t Acknowledgments --  |t References --  |g 2.  |t Bridging Cultures /  |r Sason Shaik --  |g 2.1.  |t Introduction --  |g 2.2.  |t Short History of the MO/VB Rivalry --  |g 2.3.  |t Mapping MO-Based Wave Functions to VB Wave Functions --  |g 2.4.  |t Localized Bond Orbitals -- A Pictorial Bridge between MO and VB Wave Functions --  |g 2.5.  |t Block-Localized Wave Function Method --  |g 2.6.  |t Generalized Valence Bond Theory: a Simple Bridge from VB to MOs --  |g 2.7.  |t VB Reading of CASSCF Wave Functions --  |g 2.8.  |t Natural Bonding Orbitals and Natural Resonance Theory -- a Direct Bridge between MO and VB --  |g 2.8.1.  |t Natural Bonding Orbitals --  |g 2.8.2.  |t Natural Resonance Theory --  |g 2.9.  |t Mythical Conflict of Hybrid Orbitals with Photoelectron Spectroscopy --  |g 2.10.  |t Conclusion --  |t Appendix --  |t References --  |g 3.  |t NBO View of Chemical Bonding /  |r Frank Weinhold --  |g 3.1.  |t Introduction --  |g 3.2.  |t Natural Bond Orbital Methods --  |g 3.2.1.  |t NBO Analysis of Free Atoms and Atoms in Molecular Environments --  |g 3.2.2.  |t NBO Analysis of Simple Chemical Bonds: LiOH and H2O --  |g 3.2.3.  |t Lewis-Like Structures of the P-and D-Block Elements --  |g 3.2.4.  |t Unrestricted Calculations and Different Lewis Structures for Different Spins (DLDS) --  |g 3.3.  |t Beyond Lewis-Like Bonding: The Donor--Acceptor Paradigm --  |g 3.3.1.  |t Hyperconjugative Effects in Bond Bending --  |g 3.3.2.  |t C3H3 Cation, Anion, and Radical: Aromaticity, Jahn--Teller Distortions, Resonance Structures, and 3c/2e Bonding --  |g 3.3.3.  |t 3c/4e Hypervalency --  |g 3.4.  |t Conclusion --  |t References --  |g 4.  |t EDA Perspective of Chemical Bonding /  |r F. Matthias Bickelhaupt --  |g 4.1.  |t Introduction --  |g 4.2.  |t Basic Principles of the EDA Method --  |g 4.3.  |t EDA-NOCV Method --  |g 4.4.  |t Chemical Bonding in H2 and N2 --  |g 4.5.  |t Comparison of Bonding in Isoelectronic N2, CO and BF --  |g 4.6.  |t Bonding in the Diatomic Molecules E2 of the First Octal Row E = Li-F --  |g 4.7.  |t Bonding in the Dihalogens F2 -- I2 --  |g 4.8.  |t Carbon-Element Bonding in CH3-X --  |g 4.9.  |t EDA-NOCV Analysis of Chemical Bonding in the Transition State --  |g 4.10.  |t Summary and Conclusion --  |t Acknowledgements --  |t References --  |g 5.  |t Valence Bond Perspective of the Chemical Bond /  |r Philippe C. Hiberty --  |g 5.1.  |t Introduction --  |g 5.2.  |t Brief Historical Recounting of the Development of the Chemical Bond Notion --  |g 5.3.  |t Pauling--Lewis VB Perspective of the Electron-Pair Bond --  |g 5.4.  |t Preamble to the Modern VB Perspective of the Electron-Pair Bond --  |g 5.5.  |t Theoretical Characterization of Bond Types by VB and Other Methods --  |g 5.5.1.  |t VB Characterization of Bond Types --  |g 5.5.2.  |t ELF and AIM Characterization of Bond Types --  |g 5.5.2.1.  |t ELF Characterization of Bond Types --  |g 5.5.2.2.  |t AIM Characterization of Bond Types --  |g 5.6.  |t Trends of Bond Types Revealed by VB, AIM and ELF --  |g 5.6.1.  |t VB and AIM Converge --  |g 5.6.2.  |t VB and ELF Converge --  |g 5.6.3.  |t Convergence of VB, ELF and AIM --  |g 5.6.4.  |t Three Bonding Families --  |g 5.7.  |t Physical Origins of CS Bonding --  |g 5.7.1.  |t Role of Atomic Size --  |g 5.7.2.  |t Role of Pauli Repulsion Pressure --  |g 5.8.  |t Global Behavior of Electron-Pair Bonds --  |g 5.9.  |t Additional Factors of CS Bonding --  |g 5.10.  |t Can a Covalent Bond Become CS Bonds by Substitution--  |g 5.11.  |t Experimental Manifestations of CS Bonding --  |g 5.11.1.  |t Marks of CS Bonding from Electron Density Measurements --  |g 5.11.2.  |t Marks of CS Bonding in Atom Transfer Reactivity --  |g 5.11.3.  |t Marks of CS Bonding in the Ionic Chemistry of Silicon in Condensed Phases --  |g 5.12.  |t Scope and Territory of CS Bonding --  |g 5.12.1.  |t Concluding Remarks --  |t Appendix --  |g 5.A.  |t Modern VB Methods --  |g 5.B.  |t Virial Theorem --  |g 5.C.  |t Resonance Interaction and Kinetic Energy --  |t References --  |g 6.  |t Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding /  |r Yirong Mo --  |g 6.1.  |t Introduction --  |g 6.2.  |t Methodology Evolutions --  |g 6.2.1.  |t Simplifying Ab Initio VB Theory to the BLW Method --  |g 6.2.2.  |t BLW Method at the DFT Level --  |g 6.2.3.  |t Decomposing Intermolecular Interaction Energies with the BLW Method --  |g 6.2.4.  |t Probing Electron Transfer with BLW-Based Two-State Models --  |g 6.3.  |t Exemplary Applications --  |g 6.3.1.  |t Benzene: Evaluating the Geometrical and Energetic Impacts from π Conjugation --  |g 6.3.2.  |t Butadiene: The Rotation Barrier Versus the Conjugation Magnitude --  |g 6.3.3.  |t Ethane: What Force(s) Governs the Conformational Preference--  |g 6.3.4.  |t H3B-NH3: Quantifying the Electron Transfer Effect in Donor-Acceptor Complexes --  |g 6.4.  |t Conclusion --  |g 6.5.  |t Outlook --  |t Acknowledgements --  |t References --  |g 7.  |t Conceptual Density Functional Theory Perspective of Bonding /  |r Paul Geerlings --  |g 7.1.  |t Introduction --  |g 7.2.  |t Basics of DFT: The Density as a Fundamental Carrier of Information  
880 0 0
880 0 0 |t and How to Obtain It --  |g 7.3.  |t Conceptual DFT: A Perturbative Approach to Chemical Reactivity and the Process of Bond Formation --  |g 7.3.1.  |t Basics: Global and Local Response Functions --  |g 7.3.1.1.  |t Global Response Functions --  |g 7.3.1.2.  |t Local Response Functions --  |g 7.3.1.3.  |t Nonlocal Response Functions: the Linear Response Kernel --  |g 7.3.2.  |t Combined use of DFT-Based Reactivity Indices and Principles in the Study of Chemical Bonding --  |g 7.3.2.1.  |t Principle of Electronegativity Equalization --  |g 7.3.2.2.  |t Hard and Soft Acids and Bases Principle --  |g 7.3.2.3.  |t Berlin's Approach in a Conceptual DFT Context: the Nuclear Fukui Function --  |g 7.4.  |t Conclusions --  |t Acknowledgments --  |t References --  |g 8.  |t QTAIM Perspective of Chemical Bonding /  |r Paul Lode Albert Popelier --  |g 8.1.  |t Introduction --  |g 8.2.  |t Birth of QTAIM: the Quantum Atom --  |g 8.3.  |t Topological Atom: is it also a Quantum Atom--  |g 8.4.  |t Bond Critical Point and the Bond Path --  |g 8.5.  |t Energy Partitioning Revisited --  |g 8.6.  |t Conclusion --  |t Acknowledgment --  |t References --  |g 9.  |t Experimental Density Perspective of Chemical Bonding /  |r Georg Eickerling --  |g 9.1.  |t Introduction --  |g 9.2.  |t Asphericity Shifts and the Breakdown of the Standard X-ray Model. 
949 |a ho0 
975 |p Wiley UBCM Online Book All Titles thru 2023 
976 |a 6006612 
998 |a wi  |d z 
999 f f |s a33231a6-d319-4330-9517-fdea8879de48  |i 4da74ae5-dc8b-43cb-a274-33c62adaa7e5  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QD461 .C44 2014  |h Library of Congress classification