Multivariate statistical analysis in the real and complex domains /

This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book featur...

Full description

Saved in:
Bibliographic Details
Main Authors: Mathai, A. M. (Author), Provost, Serge B. (Author), Haubold, H. J. (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2022]
Subjects:
Online Access:CONNECT
LEADER 03384cam a2200481 i 4500
001 in00006287995
006 m o d
007 cr cnu|||unuuu
008 221013s2022 sz a ob 001 0 eng d
005 20230823141530.4
020 |a 9783030958640  |q (electronic bk.) 
020 |a 3030958647  |q (electronic bk.) 
020 |z 9783030958633 
024 7 |a 10.1007/978-3-030-95864-0  |2 doi 
035 |a 1WRLDSHRon1347381548 
035 |a (OCoLC)1347381548 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d EBLCP  |d OCLCF  |d OCLCQ  |d UAB  |d UKAHL 
049 |a TXMM 
050 4 |a QA278 
082 0 4 |a 519.5/35  |2 23/eng/20221013 
100 1 |a Mathai, A. M.,  |e author. 
245 1 0 |a Multivariate statistical analysis in the real and complex domains /  |c Arak M. Mathai, Serge B. Provost, Hans J. Haubold. 
264 1 |a Cham :  |b Springer,  |c [2022] 
264 4 |c ©2022 
300 |a 1 online resource (xxii, 912 pages) :  |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 |a 1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed October 13, 2022). 
520 |a This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout. 
500 |a OAPEN Library  |5 TMurS 
650 0 |a Multivariate analysis. 
700 1 |a Provost, Serge B.,  |e author. 
700 1 |a Haubold, H. J.,  |e author. 
730 0 |a WORLDSHARE SUB RECORDS 
856 4 0 |u https://library.oapen.org/handle/20.500.12657/59381  |z CONNECT  |3 Open Access Publishing in European Networks  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s b3a80a3e-bf71-4fea-a382-fa6bc7337605  |i 5587d57f-ded1-47db-82ef-1db62fbab2c6  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 0  |e QA278   |h Library of Congress classification