Analytical heat transfer /

"Developed from the authors 30 years of teaching a graduate-level intermediate heat transfer course, Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. Suitable for entry-level graduate students, the book fills the gap betwee...

Full description

Saved in:
Bibliographic Details
Main Author: Han, Je-Chin, 1946-
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : CRC Press, ©2012.
Subjects:
Online Access:CONNECT
CONNECT
Table of Contents:
  • Machine generated contents note: 1. Heat Conduction Equations
  • 1.1. Introduction
  • 1.1.1. Conduction
  • 1.1.1.1. Fourier's Conduction Law
  • 1.1.2. Convection
  • 1.1.2.1. Newton's Cooling Law
  • 1.1.3. Radiation
  • 1.1.3.1. Stefan-Boltzmann Law
  • 1.1.4.Combined Modes of Heat Transfer
  • 1.2. General Heat Conduction Equations
  • 1.2.1. Derivations of General Heat Conduction Equations
  • 1.3. Boundary and Initial Conditions
  • 1.3.1. Boundary Conditions
  • 1.3.2. Initial Conditions
  • 1.4. Simplified Heat Conduction Equations
  • Problems
  • Reference
  • 2.1-D Steady-State Heat Conduction
  • 2.1. Conduction through Plane Walls
  • 2.1.1. Conduction through Circular Tube Walls
  • 2.1.2. Critical Radius of Insulation
  • 2.2. Conduction with Heat Generation
  • 2.3. Conduction through Fins with Uniform Cross-Sectional Area
  • 2.3.1. Fin Performance
  • 2.3.1.1. Fin Effectiveness
  • 2.3.1.2. Fin Efficiency
  • 2.3.2. Radiation Effect
  • 2.4. Conduction through Fins with Variable Cross-Sectional Area: Bessel Function Solutions
  • 2.4.1. Radiation Effect
  • Problems
  • References
  • 3.2-D Steady-State Heat Conduction
  • 3.1. Method of Separation of Variables: Given Temperature BC
  • 3.2. Method of Separation of Variables: Given Heat Flux and Convection BCs
  • 3.2.1. Given Surface Heat Flux BC
  • 3.2.2. Given Surface Convection BC
  • 3.3. Principle of Superposition for Nonhomogeneous BCs Superposition
  • 3.3.1.2-D Heat Conduction in Cylindrical Coordinates
  • 3.4. Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations
  • 3.4.1.3-D Heat Conduction Problem
  • 3.4.2. Nonhomogeneous Heat Conduction Problem
  • Problems
  • References
  • 4. Transient Heat Conduction
  • 4.1. Method of Lumped Capacitance for 0-D Problems
  • 4.1.1. Radiation Effect
  • 4.2. Method of Separation of Variables for 1-D and for Multidimensional Transient Conduction Problems
  • 4.2.1.1-D Transient Heat Conduction in a Slab
  • 4.2.2. Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D)
  • 4.2.3.1-D Transient Heat Conduction in a Rectangle with Heat Generation
  • 4.3.1-D Transient Heat Conduction in a Semiinfinite Solid Material
  • 4.3.1. Similarity Method for Semiinfinite Solid Material
  • 4.3.2. Laplace Transform Method for Semiinfinite Solid Material
  • 4.3.3. Approximate Integral Method for Semiinfinite Solid Material
  • 4.4. Heat Conduction with Moving Boundaries
  • 4.4.1. Freezing and Solidification Problems Using the Similarity Method
  • 4.4.2. Melting and Ablation Problems Using the Approximate Integral Method
  • 4.4.2.1. Ablation
  • Problems
  • References
  • 5. Numerical Analysis in Heat Conduction
  • 5.1. Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction
  • 5.2. Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction
  • 5.2.1. Finite-Difference Explicit Method
  • 5.2.2. Finite-Difference Implicit Method
  • 5.3.2-D Transient Heat Conduction
  • Problems
  • References
  • 6. Heat Convection Equations
  • 6.1. Boundary-Layer Concepts
  • 6.2. General Heat Convection Equations
  • 6.3.2-D Heat Convection Equations
  • 6.4. Boundary-Layer Approximations
  • 6.4.1. Boundary-Layer Similarity/Dimensional Analysis
  • 6.4.2. Reynolds Analogy
  • Problems
  • References
  • 7. External Forced Convection
  • 7.1. Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution
  • 7.1.1. Summary of the Similarity Solution for Laminar Boundary-Layer Flow and Heat Transfer over a Flat Surface
  • 7.2. Laminar Flow and Heat Transfer over a Flat Surface: Integral Method
  • 7.2.1. Momentum Integral Equation by Von Karman
  • 7.2.2. Energy Integral Equation by Pohlhausen
  • 7.2.3. Outline of the Integral Approximate Method
  • Problems
  • References
  • 8. Internal Forced Convection
  • 8.1. Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates
  • 8.2. Fully Developed Laminar Flow and Heat Transfer in a Circular Tube or between Parallel Plates
  • 8.2.1. Fully Developed Flow in a Tube: Friction Factor
  • 8.2.2 Case 1 Uniform Wall Heat Flux
  • 8.2.3 Case 2 Uniform Wall Temperature
  • Problems
  • References
  • 9. Natural Convection
  • 9.1. Laminar Natural Convection on a Vertical Wall: Similarity Solution
  • 9.2. Laminar Natural Convection on a Vertical Wall: Integral Method
  • Problems
  • References
  • 10. Turbulent Flow Heat Transfer
  • 10.1. Reynolds-Averaged Navier-Stokes (RANS) Equation
  • 10.1.1. Continuity Equation
  • 10.1.2. Momentum Equation: RANS
  • 10.1.3. Enthalpy/Energy Equation
  • 10.1.4. Concept of Eddy or Turbulent Diffusivity
  • 10.1.5. Reynolds Analogy for Turbulent Flow
  • 10.2. Prandtl Mixing Length Theory and Law of Wall for Velocity and Temperature Profiles
  • 10.3. Turbulent Flow Heat Transfer
  • Problems
  • References
  • 11. Fundamental Radiation
  • 11.1. Thermal Radiation Intensity and Emissive Power
  • 11.2. Surface Radiation Properties for Blackbody and Real-Surface Radiation
  • 11.3. Solar and Atmospheric Radiation
  • Problems
  • References
  • 12. View Factor
  • 12.1. View Factor
  • 12.2. Evaluation of View Factor
  • 12.2.1 Method 1 Hottel's Crossed-String Method for 2-D Geometry
  • 12.2.2 Method 2 Double-Area Integration
  • 12.2.3 Method 3 Contour Integration
  • 12.2.4 Method 4 Algebraic Method
  • Problems
  • References
  • 13. Radiation Exchange in a Nonparticipating Medium
  • 13.1. Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure
  • 13.1.1 Method 1 Electric Network Analogy
  • 13.1.2 Method 2 Matrix Linear Equations
  • 13.2. Radiation Exchange between Gray Diffuse Nonisothermal Surfaces
  • 13.3. Radiation Exchange between Nongray Diffuse Isothermal Surfaces
  • 13.4. Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces
  • 13.5. Energy Balance in an Enclosure with Diffuse and Specular Surface
  • Problems
  • References
  • 14. Radiation Transfer through Gases
  • 14.1. Gas Radiation Properties
  • 14.1.1. Volumetric Absorption
  • 14.1.2. Geometry of Gas Radiation: Geometric Mean Beam Length
  • 14.2. Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure
  • 14.2.1. Matrix Linear Equations
  • 14.2.2. Electric Network Analogy
  • 14.3. Radiation Transfer through Gases with Nonuniform Temperature
  • 14.3.1. Cryogenic Thermal Insulation
  • 14.3.2. Radiation Transport Equation in the Participating Medium
  • Problems
  • References
  • Appendix A Mathematical Relations and Functions
  • A.1. Useful Formulas
  • A.2. Hyperbolic Functions
  • A.3. Bessel Functions
  • A.3.1. Bessel Functions and Properties
  • A.3.2. Bessel Functions of the First Kind
  • A.3.3. Modified Bessel Functions of the First and Second Kinds
  • A.4. Gaussian Error Function
  • References.