Nanoporous catalysts for biomass conversion /
With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel cataly...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, NJ :
Wiley,
2018.
|
Series: | Wiley series in renewable resources.
|
Subjects: | |
Online Access: | CONNECT |
MARC
LEADER | 00000nam a22000001i 4500 | ||
---|---|---|---|
001 | in00006114485 | ||
006 | m |o d | | ||
007 | cr |n||||||||| | ||
008 | 240102t20182018njuaf ob 001 0 eng d | ||
005 | 20240124154331.5 | ||
020 | |a 9781119128113 | ||
020 | |a 1119128110 (electronic bk.) | ||
020 | |z 9781119128083 | ||
020 | |z 1119128080 | ||
035 | |a (NhCcYBP)e80fa363d91f485b9a695405a0a7a4bb9781119128113 | ||
035 | |a 1wileyeba9781119128113 | ||
040 | |a NhCcYBP |b eng |e rda |c NhCcYBP | ||
050 | 4 | |a TP248.B55 |b N36 2018 | |
082 | 0 | 4 | |a 620.1/16 |2 23 |
245 | 0 | 0 | |a Nanoporous catalysts for biomass conversion / |c edited by Feng-Shou Xiao and Liang Wang, Zhejiang University, Hangzhou, China. |
246 | 3 | 0 | |a Catalysts for biomass conversion |
264 | 1 | |a Hoboken, NJ : |b Wiley, |c 2018. | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource (xviii, 314 pages, 20 unnumbered pages of plates.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Wiley series in renewable resources | |
500 | |a Wiley EBA |5 TMurS | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g 1 |t Nanoporous Organic Frameworks for Biomass Conversion / |r Xiang Zhu |g Zhu, Xiang, Chi-Link Do-Thanh |g Do-Thanh, Chi-Link, Sheng Dai |g Dai, Sheng |g 1 -- |g 1.1 |t Introduction |g 1 -- |g 1.2 |t Nanoporous Crystalline Organic Frameworks |g 4 -- |g 1.2.1 |t Metal-Organic Frameworks |g 4 -- |g 1.2.2 |t Covalent Organic Frameworks |g 10 -- |g 1.3 |t Nanoporous Organic Sulfonated Resins |g 11 -- |g 1.3.1 |t Amberlyst Resins |g 11 -- |g 1.3.2 |t Nation Resins |g 11 -- |g 1.4 |t Conclusions and Perspective |g 13 -- |t References |g 13 -- |g 2 |t Activated Carbon and Ordered Mesoporous Carbon-Based Catalysts for Biomass Conversion / |r Xiaochen Zhao |g Zhao, Xiaochen, Jifeng Pang |g Pang, Jifeng, Guangyi Li |g Li, Guangyi, Fei Liu |g Liu, Fei, Jinming Xu |g Xu, Jinming, Mingyuan Zheng |g Zheng, Mingyuan, Ning Li |g Li, Ning, Changzhi Li |g Li, Changzhi, Aiqin Wang |g Wang, Aiqin, Lao Zhang |g Zhang, Lao |g 17 -- |g 2.1 |t Introduction |g 17 -- |g 2.2 |t Activated Carbon and Mesoporous Carbon |g 18 -- |g 2.2.1 |t Preparation of Activated Carbon and Mesoporous Carbon |g 18 -- |g 2.2.2 |t Properties of Carbon in Catalysis |g 19 -- |g 2.2.3 |t FunctionaJization of Carbon Materials |g 20 -- |g 2.3 |t Cellulose Conversion |g 21 -- |g 2.3.1 |t Cellulose Hydrolysis |g 21 -- |g 2.3.2 |t Conversion of Cellulose to Hexitols |g 27 -- |g 2.3.3 |t Conversion of Cellulose to Glycols |g 30 -- |g 2.3.4 |t Conversion of Cellulose to Other Important Chemicals |g 32 -- |g 2.4 |t Lignin Conversion |g 33 -- |g 2.4.1 |t Hydrogenolysis (Hydrocracking) |g 34 -- |g 2.4.2 |t Hydrodeoxygenation (HDO) |g 35 -- |g 2.4.3 |t Hydrogenation and Ethanolysis |g 38 -- |g 2.5 |t Synthesis of Biofuel (Diesel or Jet Fuel) from Lignocellulose |g 39 -- |g 2.5.1 |t C-C Coupling Reactions |g 40 -- |g 2.5.2 |t Hydrodeoxygenation (HDO) |g 42 -- |g 2.6 |t Summary |g 46 -- |t References |g 46 -- |g 3 |t Nanoporous Carbon/Nitrogen Materials and their Hybrids for Biomass Conversion / |r Hui Su |g Su, Hui, Hong-Hui Wang |g Wang, Hong-Hui, Tian-Jian Zhao |g Zhao, Tian-Jian, Xin-Hao Li |g Li, Xin-Hao |g 55 -- |g 3.1 |t Introduction |g 55 -- |g 3.2 |t Dehydrogenation of Formic Acid |g 57 -- |g 3.2.1 |t Mono-Metallic Nanoparticle/Carbon-Nitrogen Nanocomposites: Metal-Support Effect |g 57 -- |g 3.2.2 |t Bimetallic Nanoparticle/Carbon-Nitrogen Nanocomposites |g 59 -- |g 3.2.3 |t Trimetallic Nanoparticle/Carbon-Nitrogen Nanocomposites |g 59 -- |g 3.2.4 |t Core-Shell Nanostructure/Carbon-Nitrogen Nanocomposites |g 60 -- |g 3.2.5 |t Reduction of Carbon Dioxide to Formic Acid Using Carbon/Nitrogen Materials |g 61 -- |g 3.3 |t Transfer Hydrogenation of Unsaturated Compounds from Formic Acid |g 64 -- |g 3.4 |t Synthesis of High-Value-Added Chemicals from Biomass |g 67 -- |g 3.5 |t Metal-Free Catalyst: Graphene Oxide for the Conversion of Fructose |g 71 -- |g 3.6 |t Conclusions and Outlook |g 72 -- |t References |g 73 -- |g 4 |t Recent Developments in the Use of Porous Carbon Materials for Cellulose Conversion / |r Ahhijit Shrotri |g Shrotri, Ahhijit, Hirokazu Kobayashi |g Kobayashi, Hirokazu, Atsushi Fukuoka |g Fukuoka, Atsushi |g 79 -- |g 4.1 |t Introduction |g 79 -- |g 4.2 |t Overview of Catalytic Cellulose Hydrolysis |g 81 -- |g 4.3 |t Functionalized Carbon Catalyst for Cellulose Hydrolysis |g 84 -- |g 4.3.1 |t Synthesis and Properties of Carbon Catalysts |g 84 -- |g 4.3.2 |t Sulfonated Carbon Catalyst for Cellulose Hydrolysis |g 85 -- |g 4.3.3 |t Oxygenated Carbon Catalyst for Cellulose Hydrolysis |g 87 -- |g 4.3.4 |t Mechanistic Aspects of Carbon-Catalyzed Cellulose Hydrolysis |g 90 -- |g 4.4 |t Summary and Outlook |g 93 -- |t References |g 94 -- |g 5 |t Ordered Mesoporous Silica-Based Catalysts for Biomass Conversion / |r Liang Wang |g Wang, Liang, Shaodan Xu |g Xu, Shaodan, Xiangju Meng |g Meng, Xiangju, Feng-Shou Xiao |g Xiao, Feng-Shou |g 99 -- |g 5.1 |t Introduction |g 99 -- |g 5.2 |t Sulfated Ordered Mesoporous Silicas |g 100 -- |g 5.2.1 |t Conversion of Levulinic Acid to Valerate Esters |g 100 -- |g 5.2.2 |t One-Pot Conversion of Cellulose into Chemicals |g 101 -- |g 5.2.3 |t Dehydration of Xylose to Furfural |g 104 -- |g 5.3 |t Ordered Mesoporous Silica-Supported Polyoxometalates and Sulfated Metal Oxides |g 106 -- |g 5.4 |t Heteroatom-Doped Ordered Mesoporous Silica |g 108 -- |g 5.4.1 |t Al-Doped Mesoporous Silica |g 108 -- |g 5.4.2 |t Sn-Doped Mesoporous Silica |g 108 -- |g 5.5 |t Ordered Mesoporous Silica-Supported Metal Nanoparticles |g 109 -- |g 5.5.1 |t Mesoporous Silica-Supported Pd Nanoparticles |g 110 -- |g 5.5.2 |t Mesoporous Silica-Supported Pt Nanoparticles |g 111 -- |g 5.5.3 |t Mesoporous Silica-Supported Ni Nanoparticles |g 111 -- |g 5.6 |t Overall Summary and Outlook |g 113 -- |t References |g 115 -- |g 6 |t Porous Polydivimlbenzene-Based Solid Catalysts for Biomass Transformation Reactions / |r Fujian Liu |g Liu, Fujian, Yao Lin |g Lin, Yao |g 127 -- |g 6.1 |t Introduction |g 127 -- |g 6.2 |t Synthesis of Porous PDVB-Based Solid Acids and Investigation of their Catalytic Performances |g 129 -- |g 6.2.1 |t Sulfonic Group-Functionalized Porous PDVB |g 129 -- |g 6.2.2 |t Sulfonic Group-Functionalized Porous PDVB-SO₃H-SO₂CF₃ |g 132 -- |g 6.2.3 |t PDVB-Based Porous Solid Bases for Biomass Transformation |g 133 -- |g 6.2.4 |t Strong Acid Ionic Liquid-Functionalized PDVB-Based Catalysts |g 135 -- |g 6.2.5 |t Cooperative Effects in Applying both PDVB-Based Solid Acids and Solid Bases for Biomass Transformation |g 141 -- |g 6.3 |t Perspectives of PDVB-Based Solid Catalysts and their Application for Biomass Transformations |g 144 -- |t Acknowledgments |g 144 -- |t References |g 145 -- |g 7 |t Designing Zeolite Catalysts to Convert Glycerol, Rice Straw, and Bio-Syngas / |r Chuang Xing |g Xing, Chuang, Guohui Yang |g Yang, Guohui, Ruiqin Yang |g Yang, Ruiqin, Noritatsu Tsubaki |g Tsubaki, Noritatsu |g 149 -- |g 7.1 |t Glycerol Conversion to Propanediols |g 149 -- |g 7.1.1 |t Introduction |g 149 -- |g 7.1.2 |t Mechanisms of Propanediol Synthesis |g 151 -- |g 7.1.3 |t Zeolite Catalysts for Propanediol Synthesis |g 152 -- |g 7.1.4 |t Conclusions and Outlook |g 156 -- |g 7.2 |t Rice Straw Hydrogenation |g 156 -- |g 7.2.1 |t Introduction |g 156 -- |g 7.2.2 |t Direct Conversion of Rice Straw into Sugar Alcohol Through In-Situ Hydrogen |g 157 -- |g 7.2.3 |t Conclusions and Outlook |g 159 -- |g 7.3 |t Bio-Gasoline Direct Synthesis from Bio-Syngas |g 159 -- |g 7.3.1 |t Introduction |g 159 -- |g 7.3.2 |t Biomass Gasification to Bio-Syngas |g 160 -- |g 7.3.3 |t Representative FT Gasoline Synthesis System |g 161 -- |g 7.3.4 |t FT Gasoline Synthesis Catalysts |g 163 -- |g 7.3.5 |t Conclusions and Outlook |g 168 -- |t References |g 169 -- |g 8 |t Depolymerization of Lignin with Nanoporous Catalysts / |r Zhicheng Luo |g Luo, Zhicheng, Jiechen Kong |g Kong, Jiechen, Liubi Wu |g Wu, Liubi, Chen Zhao |g Zhao, Chen |g 177 -- |g 8.1 |t Introduction |g 177 -- |g 8.2 |t Developed Techniques for Lignin Depolymerization |g 178 -- |g 8.2.1 |t Heterogeneous Noble Metal Catalyst System in the Presence of Hydrogen |g 178 -- |g 8.2.2 |t Heterogeneous Transition Metal Catalyst System in the Presence of Hydrogen |g 183 -- |g 8.2.3 |t Homogeneous Catalyst System for Lignin Depolymerization in the Presence of H₂ |g 187 -- |g 8.2.4 |t Cleavage of C-O Bonds in Lignin with Metals and Hydrogen-Donor Solvents in the Absence of Hydrogen |g 188 -- |g 8.3 |t Oxidative Depolymerization of Lignin |g 190 -- |g 8.3.1 |t Metal-Supported Oxide Catalysts |g 191 -- |g 8.3.2 |t Polyoxometalate Catalysts |g 195 -- |g 8.3.3 |t Organometalhc Catalysts |g 196 -- |g 8.3.4 |t Ionic Liquid Catalysts |g 197 -- |g 8.4 |t Hydrolysis of Lignin with Base and Acid Catalysts |g 198 -- |g 8.5 |t Other Depolymerization Techniques (Cracking, Photocatalysis, Electrocatalysis, and Biocatalysis) |g 200 -- |g 8.6 |t Conclusions |g 202 -- |t Acknowledgments |g 203 -- |t References |g 203 -- |g 9 |t Mesoporous Zeolite for Biomass Conversion / |r Liang Wang |g Wang, Liang, Shaodan Xu |g Xu, Shaodan, Xiangju Meng |g Meng, Xiangju, Feng-Shou Xiao |g Xiao, Feng-Shou |g 209 -- |g 9.1 |t Introduction |g 209 -- |g 9.2 |t Production of Biofuels |g 210 -- |g 9.2.1 |t Pyrolysis of Biomass |g 210 -- |g 9.2.2 |t Upgrading of Pyrolysis Oil |g 211 -- |g 9.2.3 |t Conversion of Lipids into Alkane Oil |g 217 -- |g 9.2.4 |t Synthesis of Ethyl Levulinate Biofuel |g 218 -- |g 9.3 |t Conversion of Glycerol |g 220 -- |g 9.3.1 |t Dehydration of Glycerol |g 220 -- |g 9.3.2 |t Etherification of Glycerol |g 221 -- |g 9.3.3 |t Aromatization of Glycerol |g 223 -- |g 9.4 |t Overall Summary and Outlook |g 224 -- |t References |g 225 -- |g 10 |t Lignin Depolymerization Over Porous Copper-Based Mixed-Oxide Catalysts in Supercritical Ethanol / |r Xiaoming Huang |g Huang, Xiaoming, Tainás I. Korányi |g Korányi, Tainás I., Emiel J. M. Hensen |g Hensen, Emiel J. |
505 | 0 | 0 | |t M. |g 231 -- |g 10.1 |t Introduction |g 231 -- |g 10.1.1 |t Hydrotalcites |g 231 -- |g 10.1.2 |t Lignin Depolymerization |g 233 -- |g 10.2 |t Lignin Depolymerization by CuMgAl Mixed-Oxide Catalysts in Supercritical Ethanol |g 234 -- |g 10.2.1 |t Effect of Catalyst and Ethanol Solvent |g 236 -- |g 10.2.2 |t Influence of Reaction Parameters and Lignin Source |g 240 -- |g 10.2.3 |t Effect of Catalyst Composition |g 242 -- |g 10.3 |t Conclusions |g 246 -- |t References |g 248 -- |g 11 |t Niobium-Based Catalysts for Biomass Conversion / |r Qineng Xia |g Xia, Qineng, Yanqin Wang |g Wang, Yanqin |g 253 -- |g 11.1 |t Introduction |g 253 -- |g 11.2 |t Hydrolysis |g 255 -- |g 11.3 |t Dehydration |g 257 -- |g 11.3.1 |t Sorbitol Dehydration |g 257 -- |g 11.3.2 |t Carbohydrate Dehydration |g 258 -- |g 11.3.3 |t Glycerol Dehydration |g 261 -- |g 11.4 |t HMF Hydration to Levulinic Acid |g 265 -- |g 11.5 |t Hydrodeoxygenation |g 266 -- |g 11.6 |t C-C Coupling Reactions |g 272 -- |g 11.7 |t Esterihcation/Transesterification |g 272 |
505 | 8 | 0 | |g 11.8 |t Other Reactions in Biomass Conversion |g 273 -- |g 11.8.1 |t Delignincation |g 273 -- |g 11.8.2 |t Ring-Opening of GVL |g 273 -- |g 11.8.3 |t Steam Reforming Reaction |g 274 -- |g 11.8.4 |t Ketalization |g 274 -- |g 11.9 |t Summary and Outlook |g 274 -- |t References |g 275 -- |g 12 |t Towards More Sustainable Chemical Synthesis, Using Formic Acid as a Renewable Feedstock / |r Shu-Shuang Li |g Li, Shu-Shuang, Lei Tao |g Tao, Lei, Yong-Mei Liu |g Liu, Yong-Mei, Yong Can |g Can, Yong |g 283 -- |g 12.1 |t Introduction |g 283 -- |g 12.2 |t General Properties of FA and Implications for Green Synthesis |g 285 -- |g 12.3 |t Transformation of Bio-Based Platform Chemicals |g 286 -- |g 12.3.1 |t Reductive Transformation Using FA as a Hydrogen Source |g 286 -- |g 12.3.2 |t Tandem Transformation Using FA as a Versatile Reagent |g 291 -- |g 12.4 |t FA-Mediated Depolymerization of Lignin or Chitin |g 292 -- |g 12.4.1 |t Lignin Depolymerization using FA |g 292 -- |g 12.4.2 |t Chitin Depolymerization using FA |g 295 -- |g 12.5 |t Upgrading of Bio-Oil and Related Model Compounds |g 296 -- |g 12.6 |t FA as the Direct Feedstock for Bulk Chemical Synthesis |g 297 -- |g 12.7 |t Conclusions and Outlook |g 300 -- |t References |g 300. |
520 | |a With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Topics covered include: Resins for biomass conversion, Supported metal oxides/sulfides for biomass oxidation and hydrogenation, Nanoporous metal oxides, Ordered mesoporous silica-based catalysts, Sulfonated carbon catalysts, Porous polydivinylbenzene, Aluminosilicate zeolites for bio-oil upgrading, Rice straw Hydrogenation for sugar conversion, Lignin depolymerization Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering. Book jacket. | ||
588 | |a Description based on print version record. | ||
650 | 0 | |a Biomass conversion. | |
650 | 0 | |a Porous materials. | |
650 | 0 | |a Catalysts. | |
650 | 0 | |a Nanopores. | |
650 | 0 | |a Catalysis. | |
700 | 1 | |a Xiao, Feng-Shou, |d 1963- |e editor. | |
700 | 1 | |a Wang, Liang, |d 1986- |e editor. | |
730 | 0 | |a WILEYEBA | |
776 | 0 | 8 | |i Online version: |t Nanoporous catalysts for biomass conversion. |b First edition. |d Hoboken, NJ : Wiley, 2018 |z 9781119128090 |w (DLC) 2017013683 |
776 | 0 | 8 | |c Original |z 9781119128083 |z 1119128080 |w (DLC) 2017013229 |
830 | 0 | |a Wiley series in renewable resources. | |
856 | 4 | 0 | |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781119128113 |z CONNECT |3 Wiley |t 0 |
949 | |a ho0 | ||
975 | |p Wiley UBCM Online Book All Titles thru 2023 | ||
976 | |a 6006612 | ||
998 | |a wi |d z | ||
999 | f | f | |s d659fa97-f738-4625-95d5-bb1b122b97b9 |i d659fa97-f738-4625-95d5-bb1b122b97b9 |t 0 |
952 | f | f | |a Middle Tennessee State University |b Main |c James E. Walker Library |d Electronic Resources |t 0 |e TP248.B55 N36 2018 |h Library of Congress classification |