Analysis and synthesis of fault-tolerant control systems /

In recent years, control systems have become more sophisticated in order to meet increased performance and safety requirements for modern technological systems. Engineers are becoming more aware that conventional feedback control design for a complex system may result in unsatisfactory performance,...

Full description

Saved in:
Bibliographic Details
Main Author: Mahmoud, Magdi S.
Other Authors: Xia, Yuanqing.
Format: eBook
Language:English
Published: Chichester, West Sussex : Wiley, [2013]
Subjects:
Online Access:CONNECT
CONNECT
LEADER 14812nam a2200637 i 4500
001 in00006111992
006 m o d
007 cr |||||||||||
008 130627s2014 enk ob 001 0 eng
005 20220506184231.8
010 |a  2013026205 
035 |a (NhCcYBP)5d50d7e5b45a4165915fe73ab9482d3f9781118700365 
035 |a 1wileyeba9781118700365 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC 
020 |a 9781118700365 
020 |a 9781118700358  |q (ePub) 
020 |a 111870035X  |q (ePub) 
020 |a 9781118700341  |q (Adobe PDF) 
020 |a 1118700341  |q (Adobe PDF) 
020 |a 1118700368  |q (electronic bk.) 
020 |a 1118541332 
020 |a 9781118541333 
020 |z 9781118541333  |q (cloth) 
028 0 1 |a EB00174725  |b Recorded Books 
042 |a pcc 
050 0 0 |a TJ213  |b .M34 2014 
082 0 0 |a 629.8  |2 23 
100 1 |a Mahmoud, Magdi S. 
245 1 0 |a Analysis and synthesis of fault-tolerant control systems /  |c Magdi S. Mahmoud, Yuanqing Xia. 
246 3 |a Analysis and synthesis of FTCS 
264 1 |a Chichester, West Sussex :  |b Wiley,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a In recent years, control systems have become more sophisticated in order to meet increased performance and safety requirements for modern technological systems. Engineers are becoming more aware that conventional feedback control design for a complex system may result in unsatisfactory performance, or even instability, in the event of malfunctions in actuators, sensors or other system components. In order to circumvent such weaknesses, new approaches to control system design have emerged which can tolerate component malfunctions while maintaining acceptable stability and performance. These types of control systems are often known as fault-tolerant control systems (FTCS). More precisely, FTCS are control systems which possess the ability to accommodate component failure automatically. Analysis and Synthesis of Fault-Tolerant Control Systems comprehensively covers the analysis and synthesis methods of fault tolerant control systems. It unifies the methods for developing controllers and filters for a wide class of dynamical systems and reports on the recent technical advances in design methodologies. MATLAB is used throughout the book, to demonstrate methods of analysis and design. Key features: Provides advanced theoretical methods and typical practical applications Provides access to a spectrum of control design methods applied to industrial systems Includes case studies and illustrative examples Contains end-of-chapter problems Analysis and Synthesis of Fault-Tolerant Control Systems is a comprehensive reference for researchers and practitioners working in this area, and is also a valuable source of information for graduates and senior undergraduates in control, mechanical, aerospace, electrical and mechatronics engineering departments. 
505 0 0 |a Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Overview --  |g 1.2.  |t Basic Concepts of Faults --  |g 1.3.  |t Classification of Fault Detection Methods --  |g 1.3.1.  |t Hardware redundancy based fault detection --  |g 1.3.2.  |t Plausibility test --  |g 1.3.3.  |t Signal-based fault diagnosis --  |g 1.3.4.  |t Model-based fault detection --  |g 1.4.  |t Types of Fault-Tolerant Control System --  |g 1.5.  |t Objectives and Structure of AFTCS --  |g 1.6.  |t Classification of Reconfigurable Control Methods --  |g 1.6.1.  |t Classification based on control algorithms --  |g 1.6.2.  |t Classification based on field of application --  |g 1.7.  |t Outline of the Book --  |g 1.7.1.  |t Methodology --  |g 1.7.2.  |t Chapter organization --  |g 1.8.  |t Notes --  |t References --  |g 2.  |t Fault Diagnosis and Detection --  |g 2.1.  |t Introduction --  |g 2.2.  |t Related Work --  |g 2.2.7.  |t Model-based schemes --  |g 2.2.2.  |t Model-free schemes --  |g 2.2.3.  |t Probabilistic schemes --  |g 2.3.  |t Integrated Approach --  |g 2.3.1.  |t Improved multi-sensor data fusion --  |g 2.3.2.  |t Unscented transformation --  |g 2.3.3.  |t Unscented Kalman filter --  |g 2.3.4.  |t Parameter estimation --  |g 2.3.5.  |t Multi-sensor integration architectures --  |g 2.4.  |t Robust Unscented Kalman Filter --  |g 2.4.1.  |t Introduction --  |g 2.4.2.  |t Problem formulation --  |g 2.4.3.  |t Residual generation --  |g 2.4.4.  |t Residual evaluation --  |g 2.5.  |t Quadruple Tank System --  |g 2.5.7.  |t Model of the QTS --  |g 2.5.2.  |t Fault scenarios in QTS --  |g 2.5.3.  |t Implementation structure of UKF --  |g 2.5.4.  |t UKF with centralized multi-sensor data fusion --  |g 2.5.5.  |t UKF with decentralized multi-sensor data fusion --  |g 2.5.6.  |t Drift detection --  |g 2.6.  |t Industrial Utility Boiler --  |g 2.6.7.  |t Steam flow dynamics --  |g 2.6.2.  |t Drum pressure dynamics --  |g 2.6.3.  |t Drum level dynamics --  |g 2.6.4.  |t Steam temperature --  |g 2.6.5.  |t Fault model for the utility boiler --  |g 2.6.6.  |t Fault scenarios in the utility boiler --  |g 2.6.7.  |t UKF with centralized multi-sensor data fusion --  |g 2.6.8.  |t UKF with decentralized multi-sensor data fusion --  |g 2.6.9.  |t Drift detection --  |g 2.6.70.  |t Remarks --  |g 2.7.  |t Notes --  |t References --  |g 3.  |t Robust Fault Detection --  |g 3.1.  |t Distributed Fault Diagnosis --  |g 3.1.1.  |t Introduction --  |g 5.1.2.  |t System model --  |g 3.1.3.  |t Distributed FDI architecture --  |g 3.1.4.  |t Distributed fault detection method --  |g 5.1.5.  |t Adaptive thresholds --  |g 5.1.6.  |t Distributed fault isolation method --  |g 5.1.7.  |t Adaptive thresholds for DFDI --  |g 3.1.8.  |t Fault detectability condition --  |g 3.1.9.  |t Fault isolability analysis --  |g 3.1.10.  |t Stability and learning capability --  |g 3.2.  |t Robust Fault Detection Filters --  |g 5.2.1.  |t Reference model --  |g 5.2.2.  |t Design of adaptive threshold --  |g 5.2.3.  |t Iterative update of noise mean and covariance --  |g 3.2.4.  |t Unscented transformation (UT) --  |g 5.2.5.  |t Car-like mobile robot application --  |g 3.3.  |t Simultaneous Fault Detection and Control --  |g 3.3.1.  |t Introduction --  |g 3.3.2.  |t System model --  |g 3.3.3.  |t Problem formulation --  |g 3.3.4.  |t Simultaneous fault detection and control problem --  |g 3.3.5.  |t Two-tank system simulation --  |g 3.4.  |t Data-Driven Fault Detection Design --  |g 3.4.1.  |t Introduction --  |g 3.4.2.  |t Problem formulation --  |g 3.4.3.  |t Selection of weighting matrix --  |g 3.4.4.  |t Design of FDF for time-delay system --  |g 3.4.5.  |t LMI design approach --  |g 3.4.6.  |t Four-tank system simulation --  |g 3.5.  |t Robust Adaptive Fault Estimation --  |g 3.5.1.  |t Introduction --  |g 3.5.2.  |t Problem statement --  |g 3.5.3.  |t Adaptive observer --  |g 3.6.  |t Notes --  |t References --  |g 4.  |t Fault-Tolerant Control Systems --  |g 4.1.  |t Model Prediction-Based Design Approach --  |g 4.1.1.  |t Introduction --  |g 4.1.2.  |t System description --  |g 4.1.3.  |t Discrete-time UKF --  |g 4.1.4.  |t Unscented Transformation (UT) --  |g 4.1.5.  |t Controller reconfiguration --  |g 4.1.6.  |t Model predictive control --  |g 4.1.7.  |t Interconnected CSTR units --  |g 4.1.8.  |t Four-tank system --  |g 4.1.9.  |t Simulation results --  |g 4.1.10.  |t Drift detection in the interconnected CSTRs --  |g 4.1.11.  |t Information fusion from UKF --  |g 4.1.12.  |t Drift detection in the four-tank system --  |g 4.2.  |t Observer-Based Active Structures --  |g 4.2.1.  |t Problem statement --  |g 4.2.2.  |t separation principle --  |g 4.2.3.  |t FDI residuals --  |g 4.2.4.  |t Control of integrity --  |g 4.2.5.  |t Overall stability --  |g 4.2.6.  |t Design outline --  |g 4.2.7.  |t Design of an active FTC scheme --  |g 4.2.8.  |t Extraction of FDI-FTC pairs --  |g 4.2.9.  |t Simulation --  |g 4.3.  |t Notes --  |t References --  |g 5.  |t Fault-Tolerant Nonlinear Control Systems --  |g 5.1.  |t Comparison of Fault Detection Schemes --  |g 5.2.  |t Fault Detection in Nonlinear Systems --  |g 5.3.  |t Nonlinear Observer-Based Residual Generation Schemes --  |g 5.3.1.  |t General considerations --  |g 5.3.2.  |t Extended Luenberger observer --  |g 5.3.3.  |t Nonlinear identity observer approach --  |g 5.3.4.  |t Unknown input observer approach --  |g 5.3.5.  |t disturbance decoupling nonlinear observer approach --  |g 5.3.6.  |t Adaptive nonlinear observer approach --  |g 5.3.7.  |t High-gain observer approach --  |g 5.3.8.  |t Sliding-mode observer approach --  |g 5.3.9.  |t Geometric approach --  |g 5.3.10.  |t Game-theoretic approach --  |g 5.3.11.  |t Observers for Lipschitz nonlinear systems --  |g 5.3.12.  |t Lyapunov-reconstruction-based passive scheme --  |g 5.3.13.  |t Time-varying results --  |g 5.3.14.  |t Optimization-based active scheme --  |g 5.3.15.  |t Learning-based active scheme --  |g 5.3.16.  |t Adaptive backstepping-based active scheme --  |g 5.3.17.  |t Switched control-based active scheme --  |g 5.3.18.  |t Predictive control-based active scheme --  |g 5.4.  |t Integrated Control Reconfiguration Scheme --  |g 5.4.1.  |t Introduction --  |g 5.4.2.  |t Basic features --  |g 5.4.3.  |t Nonlinear model of a pendulum on a cart --  |g 5.4.4.  |t NGA adaptive filter design --  |g 5.4.5.  |t Simulation results --  |g 5.4.6.  |t Performance evaluation --  |g 5.4.7.  |t Comparative studies --  |g 5.5.  |t Notes --  |t References --  |g 6.  |t Robust Fault Estimation --  |g 6.1.  |t Introduction --  |g 6.2.  |t System Description --  |g 6.3.  |t Multiconstrained Fault Estimation --  |g 6.3.1.  |t Observer design --  |g 6.3.2.  |t Existence conditions --  |g 6.3.3.  |t Improved results --  |g 6.3.4.  |t Simulation results --  |g 6.4.  |t Adaptive Fault Estimation --  |g 6.4.7.  |t Introduction --  |g 6.4.2.  |t Problem statement --  |g 6.4.3.  |t Robust adaptive estimation --  |g 6.4.4.  |t Internal stability analysis --  |g 6.4.5.  |t Robust performance index --  |g 6.4.6.  |t Simulation --  |g 6.5.  |t Adaptive Tracking Control Scheme --  |g 6.5.1.  |t Attitude dynamics --  |g 6.5.2.  |t Fault detection scheme --  |g 6.5.3.  |t Fault-tolerant tracking scheme --  |g 6.6.  |t Notes --  |t References --  |g 7.  |t Fault Detection of Networked Control Systems --  |g 7.1.  |t Introduction --  |g 7.2.  |t Problem Formulation --  |g 7.3.  |t Modified Residual Generator Scheme --  |g 7.3.1.  |t Modified residual generator and dynamic analysis --  |g 7.3.2.  |t Residual evaluation --  |g 7.3.3.  |t Co-design of residual generator and evaluation --  |g 7.4.  |t Quantized Fault-Tolerant Control --  |g 7.4.1.  |t Introduction --  |g 7.4.2.  |t Problem statement --  |g 7.4.3.  |t Quantized control design --  |g 7.4.4.  |t Simulation --  |g 7.5.  |t Sliding-Mode Observer --  |g 7.5.1.  |t Introduction --  |g 7.5.2.  |t Dynamic model --  |g 7.5.3.  |t Limited state measurements --  |g 7.5.4.  |t Simulation results: full state measurements --  |g 7.5.5.  |t Simulation results: partial state measurements --  |g 7.6.  |t Control of Linear Switched Systems --  |g 7.6.1.  |t Introduction --  |g 7.6.2.  |t Problem formulation --  |g 7.6.3.  |t Stability of a closed-loop system --  |g 7.6.4.  |t Simulation --  |g 7.7.  |t Notes --  |t References --  |g 8.  |t Industrial Fault-Tolerant Architectures --  |g 8.1.  |t Introduction --  |g 8.2.  |t System Architecture --  |g 8.3.  |t Architecture of a Fault-Tolerant Node --  |g 8.3.1.  |t Basic architecture --  |g 8.3.2.  |t Architecture with improved reliability --  |g 8.3.3.  |t Symmetric node architecture --  |g 8.3.4.  |t Results --  |g 8.4.  |t Recovery Points --  |g 8.5.  |t Networks --  |g 8.6.  |t System Fault Injection and Monitoring --  |g 8.6.1.  |t Monitoring systems --  |g 8.6.2.  |t Design methodology --  |g 8.7.  |t Notes --  |t References --  |g 9.  |t Fault Estimation for Stochastic Systems --  |g 9.1.  |t Introduction --  |g 9.2.  |t Actuator Fault Diagnosis Design --  |g 9.3.  |t Fault-Tolerant Controller Design --  |g 9.4.  |t Extension to an Unknown Input Case --  |g 9.5.  |t Aircraft Application --  |g 9.5.1.  |t Transforming the system into standard form --  |g 9.5.2.  |t Simulation results --  |g 9.6.  |t Router Fault Accommodation in Real Time --  |g 9.6.1.  |t Canonical controller and achievable behavior --  |g 9.6.2.  |t Router modeling and desired behavior --  |g 9.6.3.  |t Description of fault behavior --  |g 9.6.4.  |t least restrictive controller --  |g 9.7.  |t Fault Detection for Markov Jump Systems --  |g 9.7.1.  |t Introduction --  |g 9.7.2.  |t Problem formulation --  |g 9.7.3.  |t H∞ bounded real lemmas --  |g 9.7.4.  |t H∞ FD filter design --  |g 9.7.5.  |t Simulation --  |g 9.8.  |t Notes --  |t References  
505 0 0 |t --  |g 10.  |t Applications --  |g 10.1.  |t Detection of Abrupt Changes in an Electrocardiogram --  |g 10.1.1.  |t Introduction --  |g 10.1.2.  |t Modeling ECG signals with an AR model --  |g 10.1.3.  |t Linear models with additive abrupt changes --  |g 10.1.4.  |t Off-line detection of abrupt changes in ECG --  |g 10.1.5.  |t Online detection of abrupt changes in ECG --  |g 10.2.  |t Detection of Abrupt Changes in the Frequency Domain --  |g 10.2.1.  |t Introduction --  |g 10.2.2.  |t Problem formulation --  |g 10.2.3.  |t Frequency domain ML ratio estimation --  |g 10.2.4.  |t Likelihood of the hypothesis of no abrupt change --  |g 10.2.5.  |t Effect of an abrupt change --  |g 10.2.6.  |t Simulation results --  |g 10.3.  |t Electromechanical Positioning System --  |g 10.3.1.  |t Introduction --  |g 10.3.2.  |t Problem formulation --  |g 10.3.3.  |t Test bed --  |g 10.4.  |t Application to Fermentation Processes --  |g 10.4.1.  |t Nonlinear faulty dynamic system --  |g 10.4.2.  |t Residual characteristics --  |g 10.4.3.  |t parameter filter --  |g 10.4.4.  |t Fault filter --  |g 10.4.5.  |t Fault isolation and identification --  |g 10.4.6.  |t Isolation speed --  |g 10.4.7.  |t Parameter partition --  |g 10.4.8.  |t Adaptive intervals --  |g 10.4.9.  |t Simulation studies --  |g 10.5.  |t Flexible-Joint Robots --  |g 10.5.1.  |t Problem formulation --  |g 10.5.2.  |t Fault detection scheme 
505 0 0 |g Note continued:  |g 10.5.3.  |t Adaptive fault accommodation control --  |g 10.5.4.  |t Control with prescribed performance bounds --  |g 10.5.5.  |t Simulation results --  |g 10.6.  |t Notes --  |t References --  |g A.  |t Supplementary Information --  |g A.1.  |t Notation --  |g A. 1.1  |t Kronecker products --  |g A.7.2.  |t Some definitions --  |g A.1.3.  |t Matrix lemmas --  |g A.2.  |t Results from Probability Theory --  |g A.2.1.  |t Results-A --  |g A.2.2.  |t Results-B --  |g A.2.3.  |t Results-C --  |g A.2.4.  |t Minimum mean square estimate --  |g A.3.  |t Stability Notions --  |g A.3.1.  |t Practical stabilizability --  |g A.3.2.  |t Razumikhin stability --  |g A.4.  |t Basic Inequalities --  |g A.4.1.  |t Schur complements --  |g A.4.2.  |t Bounding inequalities --  |g A.5.  |t Linear Matrix Inequalities --  |g A.5.1.  |t Basics --  |g A.5.2.  |t Some standard problems --  |g A.5.3.  |t S-procedure --  |g A.6.  |t Some Formulas on Matrix Inverses --  |g A.6.1.  |t Inverse of block matrices --  |g A.6.2.  |t Matrix inversion lemma. 
590 |a Wiley EBA 
650 0 |a Automatic control. 
650 0 |a Fault tolerance (Engineering) 
650 0 |a Control theory. 
700 1 |a Xia, Yuanqing. 
730 0 |a WILEYEBA 
776 0 8 |i Print version:  |a Mahmoud, Magdi S.  |t Analysis and synthesis of fault-tolerant control systems.  |d Chichester, West Sussex : John Wiley & Sons, Ltd, [2013]  |z 9781118541333  |w (DLC) 2013023504 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781118700365  |z CONNECT  |3 Wiley  |t 0 
949 |a ho0 
975 |p Wiley UBCM All Titles thru 2021 
976 |a 6005108 
998 |a wi  |d z 
999 f f |s 8cd77ab1-334f-4217-9398-4250260c7bf8  |i 8cd77ab1-334f-4217-9398-4250260c7bf8  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e TJ213 .M34 2014  |h Library of Congress classification 
856 4 0 |3 Wiley  |t 0  |u https://ezproxy.mtsu.edu/login?url=https://onlinelibrary.wiley.com/book/10.1002/9781118700365  |z CONNECT