Hands-on machine learning with Python : implement neural network solutions with Scikit-learn and PyTorch /

Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytor...

Full description

Saved in:
Bibliographic Details
Main Authors: Pajankar, Ashwin (Author), Joshi, Aditya (Author)
Format: eBook
Language:English
Published: [Berkeley] : Apress, [2022]
Subjects:
Online Access:CONNECT
CONNECT
LEADER 05121cam a2200553Ii 4500
001 in00006100187
006 m o d
007 cr cnu---unuuu
008 220309s2022 caua o 001 0 eng d
005 20220712155636.2
035 |a 1WRLDSHRon1302584590 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d ORMDA  |d YDX  |d OCLCO  |d EBLCP  |d OCLCO  |d OCLCF 
019 |a 1302338986  |a 1302689683  |a 1302740725  |a 1302953704  |a 1302987087  |a 1303052573  |a 1303075657  |a 1303184233  |a 1303215149  |a 1303559077 
020 |a 9781484279212  |q (electronic bk.) 
020 |a 1484279212  |q (electronic bk.) 
020 |z 1484279204 
020 |z 9781484279205 
024 7 |a 10.1007/978-1-4842-7921-2  |2 doi 
024 8 |a 9781484279212 
035 |a (OCoLC)1302584590  |z (OCoLC)1302338986  |z (OCoLC)1302689683  |z (OCoLC)1302740725  |z (OCoLC)1302953704  |z (OCoLC)1302987087  |z (OCoLC)1303052573  |z (OCoLC)1303075657  |z (OCoLC)1303184233  |z (OCoLC)1303215149  |z (OCoLC)1303559077 
037 |a 9781484279212  |b O'Reilly Media 
050 4 |a Q325.5  |b .P35 2022 
082 0 4 |a 006.3/1  |2 23 
049 |a TXMM 
100 1 |a Pajankar, Ashwin,  |e author. 
245 1 0 |a Hands-on machine learning with Python :  |b implement neural network solutions with Scikit-learn and PyTorch /  |c Ashwin Pajankar, Aditya Joshi. 
264 1 |a [Berkeley] :  |b Apress,  |c [2022] 
264 4 |c ©2022 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. You will: Review data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithm Understand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networks Get acquainted with scikit-learn and PyTorch Predict sequences in recurrent neural networks and long short term memory . 
505 0 |a Chapter 1: Getting Started with Python 3 and Jupyter Notebook -- Chapter 2: Getting Started with NumPy -- Chapter 3 : Introduction to Data Visualization -- Chapter 4 : Introduction to Pandas -- Chapter 5: Introduction to Machine Learning with Scikit-Learn -- Chapter 6: Preparing Data for Machine Learning -- Chapter 7: Supervised Learning Methods - 1 -- Chapter 8: Tuning Supervised Learners -- Chapter 9: Supervised Learning Methods - 2 -- Chapter 10: Ensemble Learning Methods -- Chapter 11: Unsupervised Learning Methods -- Chapter 12: Neural Networks and Pytorch Basics -- Chapter 13: Feedforward Neural Networks -- Chapter 14: Convolutional Neural Network -- Chapter 15: Recurrent Neural Network -- Chapter 16: Bringing It All Together. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
700 1 |a Joshi, Aditya,  |e author. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |a PAJANKAR, ASHWIN. JOSHI, ADITYA.  |t HANDS-ON MACHINE LEARNING WITH PYTHON.  |d [Place of publication not identified] : APRESS, 2022  |z 1484279204  |w (OCoLC)1274198520 
856 4 0 |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781484279212/?ar  |z CONNECT  |3 O'Reilly  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s 38289484-d24e-4223-876b-09effe1a8870  |i 0f2a5662-a552-4bf9-b294-c8b63bdd5595  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e Q325.5 .P35 2022  |h Library of Congress classification 
856 4 0 |3 O'Reilly  |t 0  |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781484279212/?ar  |z CONNECT