TensorFlow 2.x in the Colaboratory Cloud : an introduction to deep learning on Google's Cloud Service /

Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x alon...

Full description

Saved in:
Bibliographic Details
Main Author: Paper, David (Author)
Format: eBook
Language:English
Published: [Berkeley, CA] : Apress, [2021]
Subjects:
Online Access:CONNECT
CONNECT
LEADER 04905cam a2200565 i 4500
001 in00006079323
006 m o d
007 cr cnu|||unuuu
008 210116s2021 cau o 001 0 eng d
005 20220712171857.4
035 |a 1WRLDSHRon1231607895 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d DCT  |d RDF  |d ERF  |d LDP  |d GW5XE  |d OCLCF  |d VT2  |d N$T  |d UKAHL  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1231653503  |a 1238202304  |a 1238206195  |a 1238206799  |a 1240514380 
020 |a 1484266498  |q (electronic book) 
020 |a 9781484266502  |q (print) 
020 |a 1484266501 
020 |a 9781484266496  |q (electronic bk.) 
020 |z 148426648X 
020 |z 9781484266489 
024 7 |a 10.1007/978-1-4842-6649-6  |2 doi 
035 |a (OCoLC)1231607895  |z (OCoLC)1231653503  |z (OCoLC)1238202304  |z (OCoLC)1238206195  |z (OCoLC)1238206799  |z (OCoLC)1240514380 
037 |b Springer 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a TXMM 
100 1 |a Paper, David,  |e author. 
245 1 0 |a TensorFlow 2.x in the Colaboratory Cloud :  |b an introduction to deep learning on Google's Cloud Service /  |c David Paper. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2021] 
300 |a 1 online resource (279 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
520 |a Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else--Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks--is provided and ready to go from Colab. The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks. This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office. You will: Be familiar with the basic concepts and constructs of applied deep learning Create machine learning models with clean and reliable Python code Work with datasets common to deep learning applications Prepare data for TensorFlow consumption Take advantage of Google Colab's built-in support for deep learning Execute deep learning experiments using a variety of neural network models Be able to mount Google Colab directly to your Google Drive account Visualize training versus test performance to see model fit. 
505 0 |a Introduction to deep learning -- Build your first neural network with Google Colab -- Working with TensorFlow data -- Working with other data -- Classification -- Regression -- Convolutional neural networks -- Automated text generation -- Sentiment analysis -- Time series forecasting with RNNs. 
500 |a Includes index. 
590 |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) 
650 0 |a Machine learning. 
650 0 |a Data structures (Computer science) 
650 0 |a Artificial intelligence. 
730 0 |a WORLDSHARE SUB RECORDS 
776 0 8 |i Print version:  |z 9781484266489 
856 4 0 |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781484266496/?ar  |z CONNECT  |3 O'Reilly  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s f6ae6801-97b4-462a-a167-f5eacec98935  |i 0c595a80-0291-4189-b511-b1a391ec1772  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e Q325.5   |h Library of Congress classification 
856 4 0 |3 O'Reilly  |t 0  |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781484266496/?ar  |z CONNECT