PySpark cookbook : over 60 recipes for implementing big data processing and analytics using Apache Spark and Python /


Saved in:
Bibliographic Details
Main Authors: Lee, Denny (Author), Drabas, Tomasz (Author)
Format: eBook
Published: Birmingham, UK : Packt Publishing, 2018.
Online Access:CONNECT
LEADER 04315cam a2200505 i 4500
001 in00006078540
006 m o d
007 cr unu||||||||
008 180731s2018 enka o 000 0 eng d
005 20220713131343.3
035 |a 1WRLDSHRon1046682462 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d TOH  |d OCLCF  |d TEFOD  |d CEF  |d G3B  |d S9I  |d TEFOD  |d N$T  |d UAB  |d VT2  |d C6I  |d OCLCQ  |d OCLCO 
020 |a 9781788834254  |q (electronic bk.) 
020 |a 1788834259  |q (electronic bk.) 
020 |a 1788835360 
020 |a 9781788835367 
035 |a (OCoLC)1046682462 
037 |a CL0500000982  |b Safari Books Online 
037 |a 55E99F21-0020-496F-888A-FB71516280B1  |b OverDrive, Inc.  |n 
050 4 |a QA76.76.A65 
082 0 4 |a 004.2 
049 |a TXMM 
100 1 |a Lee, Denny,  |e author. 
245 1 0 |a PySpark cookbook :  |b over 60 recipes for implementing big data processing and analytics using Apache Spark and Python /  |c Denny Lee, Tomasz Drabas. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed July 30, 2018). 
520 8 |a Annotation  |b Combine the power of Apache Spark and Python to build effective big data applicationsKey FeaturesPerform effective data processing, machine learning, and analytics using PySparkOvercome challenges in developing and deploying Spark solutions using PythonExplore recipes for efficiently combining Python and Apache Spark to process dataBook DescriptionApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications. What you will learnConfigure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environmentsCreate DataFrames from JSON and a dictionary using pyspark.sqlExplore regression and clustering models available in the ML moduleUse DataFrames to transform data used for modelingConnect to PubNub and perform aggregations on streamsWho this book is forThe PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book. 
590 |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) 
650 0 |a Application software  |x Development. 
650 0 |a Python (Computer program language) 
650 0 |a SPARK (Computer program language) 
700 1 |a Drabas, Tomasz,  |e author. 
856 4 0 |u  |z CONNECT  |3 O'Reilly  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi  |d z 
999 f f |s c40bc59b-9d12-4615-aae4-b499e8149782  |i c6861f68-c7cb-4267-a473-5fb36569245c  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e QA76.76.A65   |h Library of Congress classification 
856 4 0 |3 O'Reilly  |t 0  |u  |z CONNECT