Deep learning with PyTorch /

"This video course will get you up-and-running with one of the most cutting-edge deep learning libraries: PyTorch. Written in Python, PyTorch is grabbing the attention of all data science professionals due to its ease of use over other libraries and its use of dynamic computation graphs. In thi...

Full description

Saved in:
Bibliographic Details
Other Authors: Saha, Anand (Speaker)
Format: Video
Language:English
Published: [Place of publication not identified] : Packt, [2018]
Subjects:
Online Access:CONNECT
CONNECT
LEADER 03145cgm a2200505 i 4500
001 in00006078357
006 m o c
007 cr cna||||||||
007 vz czazuu
008 180711s2018 xx 283 o vleng d
005 20220713131339.3
035 |a 1WRLDSHRon1043906469 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d S9I  |d UAB  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1043906469 
037 |a CL0500000978  |b Safari Books Online 
050 4 |a QA76.87 
049 |a TXMM 
100 1 |a Saha, Anand,  |e speaker. 
245 1 0 |a Deep learning with PyTorch /  |c Anand Saha. 
264 1 |a [Place of publication not identified] :  |b Packt,  |c [2018] 
300 |a 1 online resource (1 streaming video file (4 hr., 42 min., 46 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
338 |a other  |b vz  |2 rdacarrier 
347 |a data file 
380 |a Videorecording 
511 0 |a Presenter, Anand Saha. 
500 |a Title from title screen (viewed July 11, 2018). 
500 |a Date of publication from resource description page. 
520 |a "This video course will get you up-and-running with one of the most cutting-edge deep learning libraries: PyTorch. Written in Python, PyTorch is grabbing the attention of all data science professionals due to its ease of use over other libraries and its use of dynamic computation graphs. In this course, you will learn how to accomplish useful tasks using Convolutional Neural Networks to process spatial data such as images and using Recurrent Neural Networks to process sequential data such as texts. You will explore how you can make use of unlabeled data using Auto Encoders. You will also be training a neural network to learn how to balance a pole all by itself, using Reinforcement Learning. Throughout this journey, you will implement various mechanisms of the PyTorch framework to do these tasks. By the end of the video course, you will have developed a good understanding of, and feeling for, the algorithms and techniques used. You'll have a good knowledge of how PyTorch works and how you can use it in to solve your daily machine learning problems."--Resource description page 
590 |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
730 0 |a WORLDSHARE SUB RECORDS 
856 4 0 |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781788475266/?ar  |z CONNECT  |3 O'Reilly  |t 0 
949 |a ho0 
994 |a 92  |b TXM 
998 |a wi 
999 f f |s 6fb8f6c9-77bc-4bbb-be3b-04afd6be4b3a  |i 0397aea2-8507-4e9a-88cc-96e8b835dfea  |t 0 
952 f f |a Middle Tennessee State University  |b Main  |c James E. Walker Library  |d Electronic Resources  |t 1  |e QA76.87   |h Library of Congress classification 
856 4 0 |3 O'Reilly  |t 0  |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781788475266/?ar  |z CONNECT