Data Wrangling with JavaScript /
Data Wrangling with JavaScript promotes JavaScript to the center of the data analysis stage! With this hands-on guide, you'll create a JavaScript-based data processing pipeline, handle common and exotic data, and master practical troubleshooting strategies. You'll also build interactive vi...
Saved in:
Main Author: | |
---|---|
Corporate Author: | |
Format: | eBook |
Language: | English |
Published: |
Manning Publications,
2018.
|
Edition: | 1st edition. |
Subjects: | |
Online Access: | CONNECT CONNECT |
LEADER | 09902cam a2200529Ma 4500 | ||
---|---|---|---|
001 | in00006075797 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 190116s2018 xx o 000 0 eng | ||
005 | 20220713131741.0 | ||
035 | |a 1WRLDSHRon1099552679 | ||
040 | |a AU@ |b eng |e pn |c AU@ |d OCLCQ |d BRF |d OCLCF |d OCLCO |d LIV |d CZL | ||
020 | |z 9781617294846 | ||
024 | 8 | |a 9781617294846 | |
035 | |a (OCoLC)1099552679 | ||
050 | 1 | 4 | |a QA76.73.J39 |b .D38 2018 |
082 | 0 | 4 | |a 006.312 |2 23 |
049 | |a TXMM | ||
100 | 1 | |a Davis, Ashley, |e author. | |
245 | 1 | 0 | |a Data Wrangling with JavaScript / |c Davis, Ashley. |
250 | |a 1st edition. | ||
264 | 1 | |b Manning Publications, |c 2018. | |
300 | |a 1 online resource (432 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
520 | |a Data Wrangling with JavaScript promotes JavaScript to the center of the data analysis stage! With this hands-on guide, you'll create a JavaScript-based data processing pipeline, handle common and exotic data, and master practical troubleshooting strategies. You'll also build interactive visualizations and deploy your apps to production. Each valuable chapter provides a new component for your reusable data wrangling toolkit. | ||
542 | |f Copyright © Manning Publications 2018 |g 2018 | ||
550 | |a Made available through: Safari, an O'Reilly Media Company. | ||
505 | 0 | |a Intro -- Titlepage -- Copyright -- preface -- acknowledgments -- about this book -- Who should read this book -- How this book is organized: a roadmap -- About the code -- Book forum -- Other online resources -- about the author -- about the cover illustration -- Chapter 1: Getting started: establishing your data pipeline -- 1.1 Why data wrangling? -- 1.2 What's data wrangling? -- 1.3 Why a book on JavaScript data wrangling? -- 1.4 What will you get out of this book? -- 1.5 Why use JavaScript for data wrangling? -- 1.6 Is JavaScript appropriate for data analysis? -- 1.7 Navigating the JavaScript ecosystem -- 1.8 Assembling your toolkit -- 1.9 Establishing your data pipeline -- 1.9.1 Setting the stage -- 1.9.2 The data-wrangling process -- 1.9.3 Planning -- 1.9.4 Acquisition, storage, and retrieval -- 1.9.5 Exploratory coding -- 1.9.6 Clean and prepare -- 1.9.7 Analysis -- 1.9.8 Visualization -- 1.9.9 Getting to production -- Summary -- Chapter 2: Getting started with Node.js -- 2.1 Starting your toolkit -- 2.2 Building a simple reporting system -- 2.3 Getting the code and data -- 2.3.1 Viewing the code -- 2.3.2 Downloading the code -- 2.3.3 Installing Node.js -- 2.3.4 Installing dependencies -- 2.3.5 Running Node.js code -- 2.3.6 Running a web application -- 2.3.7 Getting the data -- 2.3.8 Getting the code for chapter 2 -- 2.4 Installing Node.js -- 2.4.1 Checking your Node.js version -- 2.5 Working with Node.js -- 2.5.1 Creating a Node.js project -- 2.5.2 Creating a command-line application -- 2.5.3 Creating a code library -- 2.5.4 Creating a simple web server -- 2.6 Asynchronous coding -- 2.6.1 Loading a single file -- 2.6.2 Loading multiple files -- 2.6.3 Error handling -- 2.6.4 Asynchronous coding with promises -- 2.6.5 Wrapping asynchronous operations in promises -- 2.6.6 Async coding with "async" and "await" -- Summary. | |
505 | 8 | |a Chapter 3: Acquisition, storage, and retrieval -- 3.1 Building out your toolkit -- 3.2 Getting the code and data -- 3.3 The core data representation -- 3.3.1 The earthquakes website -- 3.3.2 Data formats covered -- 3.3.3 Power and flexibility -- 3.4 Importing data -- 3.4.1 Loading data from text files -- 3.4.2 Loading data from a REST API -- 3.4.3 Parsing JSON text data -- 3.4.4 Parsing CSV text data -- 3.4.5 Importing data from databases -- 3.4.6 Importing data from MongoDB -- 3.4.7 Importing data from MySQL -- 3.5 Exporting data -- 3.5.1 You need data to export! -- 3.5.2 Exporting data to text files -- 3.5.3 Exporting data to JSON text files -- 3.5.4 Exporting data to CSV text files -- 3.5.5 Exporting data to a database -- 3.5.6 Exporting data to MongoDB -- 3.5.7 Exporting data to MySQL -- 3.6 Building complete data conversions -- 3.7 Expanding the process -- Summary -- Chapter 4: Working with unusual data -- 4.1 Getting the code and data -- 4.2 Importing custom data from text files -- 4.3 Importing data by scraping web pages -- 4.3.1 Identifying the data to scrape -- 4.3.2 Scraping with Cheerio -- 4.4 Working with binary data -- 4.4.1 Unpacking a custom binary file -- 4.4.2 Packing a custom binary file -- 4.4.3 Replacing JSON with BSON -- 4.4.4 Converting JSON to BSON -- 4.4.5 Deserializing a BSON file -- Summary -- Chapter 5: Exploratory coding -- 5.1 Expanding your toolkit -- 5.2 Analyzing car accidents -- 5.3 Getting the code and data -- 5.4 Iteration and your feedback loop -- 5.5 A first pass at understanding your data -- 5.6 Working with a reduced data sample -- 5.7 Prototyping with Excel -- 5.8 Exploratory coding with Node.js -- 5.8.1 Using Nodemon -- 5.8.2 Exploring your data -- 5.8.3 Using Data-Forge -- 5.8.4 Computing the trend column -- 5.8.5 Outputting a new CSV file -- 5.9 Exploratory coding in the browser -- Putting it all together. | |
505 | 8 | |a 8.7.7 Filtering using queries -- 8.7.8 Discarding data with projection -- 8.7.9 Sorting large data sets -- 8.8 Achieving better data throughput -- 8.8.1 Optimize your code -- 8.8.2 Optimize your algorithm -- 8.8.3 Processing data in parallel -- Summary -- Chapter 9: Practical data analysis -- 9.1 Expanding your toolkit -- 9.2 Analyzing the weather data -- 9.3 Getting the code and data -- 9.4 Basic data summarization -- 9.4.1 Sum -- 9.4.2 Average -- 9.4.3 Standard deviation -- 9.5 Group and summarize -- 9.6 The frequency distribution of temperatures -- 9.7 Time series -- 9.7.1 Yearly average temperature -- 9.7.2 Rolling average -- 9.7.3 Rolling standard deviation -- 9.7.4 Linear regression -- 9.7.5 Comparing time series -- 9.7.6 Stacking time series operations -- 9.8 Understanding relationships -- 9.8.1 Detecting correlation with a scatter plot -- 9.8.2 Types of correlation -- 9.8.3 Determining the strength of the correlation -- 9.8.4 Computing the correlation coefficient -- Summary -- Chapter 10: Browser-based visualization -- 10.1 Expanding your toolkit -- 10.2 Getting the code and data -- 10.3 Choosing a chart type -- 10.4 Line chart for New York City temperature -- 10.4.1 The most basic C3 line chart -- 10.4.2 Adding real data -- 10.4.3 Parsing the static CSV file -- 10.4.4 Adding years as the X axis -- 10.4.5 Creating a custom Node.js web server -- 10.4.6 Adding another series to the chart -- 10.4.7 Adding a second Y axis to the chart -- 10.4.8 Rendering a time series chart -- 10.5 Other chart types with C3 -- 10.5.1 Bar chart -- 10.5.2 Horizontal bar chart -- 10.5.3 Pie chart -- 10.5.4 Stacked bar chart -- 10.5.5 Scatter plot chart -- 10.6 Improving the look of our charts -- 10.7 Moving forward with your own projects -- Summary -- Chapter 11: Server-side visualization -- 11.1 Expanding your toolkit -- 11.2 Getting the code and data. | |
505 | 8 | |a 11.3 The headless browser -- 11.4 Using Nightmare for server-side visualization -- 11.4.1 Why Nightmare? -- 11.4.2 Nightmare and Electron -- 11.4.3 Our process: capturing visualizations with Nightmare -- 11.4.4 Prepare a visualization to render -- 11.4.5 Starting the web server -- 11.4.6 Procedurally start and stop the web server -- 11.4.7 Rendering the web page to an image -- 11.4.8 Before we move on . . . -- 11.4.9 Capturing the full visualization -- Feeding the chart with data -- Multipage reports -- Debugging code in the headless browser -- Making it work on a Linux server -- 11.5 You can do much more with a headless browser -- 11.5.1 Web scraping -- 11.5.2 Other uses -- Summary -- Chapter 12: Live data -- 12.1 We need an early warning system -- 12.2 Getting the code and data -- 12.3 Dealing with live data -- 12.4 Building a system for monitoring air quality -- 12.5 Set up for development -- 12.6 Live-streaming data -- 12.6.1 HTTP POST for infrequent data submission -- 12.6.2 Sockets for high-frequency data submission -- 12.7 Refactor for configuration -- 12.8 Data capture -- 12.9 An event-based architecture -- Code restructure for event handling -- 12.10.1 Triggering SMS alerts -- 12.10.2 Automatically generating a daily report -- Live data processing -- Live visualization -- Summary -- Chapter 13: Advanced visualization with D3 -- 13.1 Advanced visualization -- 13.2 Getting the code and data -- 13.3 Visualizing space junk -- 13.4 What is D3? -- 13.5 The D3 data pipeline -- 13.6 Basic setup -- 13.7 SVG crash course -- 13.7.1 SVG circle -- 13.7.2 Styling -- 13.7.3 SVG text -- 13.7.4 SVG group -- 13.8 Building visualizations with D3 -- 13.8.1 Element state -- 13.8.2 Selecting elements -- 13.8.3 Manually adding elements to our visualization -- 13.8.4 Scaling to fit -- 13.8.5 Procedural generation the D3 way -- 13.8.6 Loading a data file. | |
590 | |a O'Reilly Online Learning Platform: Academic Edition (SAML SSO Access) | ||
650 | 0 | |a JavaScript (Computer program language) | |
650 | 0 | |a Data mining |x Computer programs. | |
650 | 0 | |a Electronic data processing |x Data preparation. | |
710 | 2 | |a Safari, an O'Reilly Media Company. | |
730 | 0 | |a WORLDSHARE SUB RECORDS | |
856 | 4 | 0 | |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781617294846/?ar |z CONNECT |3 O'Reilly |t 0 |
949 | |a ho0 | ||
994 | |a 92 |b TXM | ||
998 | |a wi |d z | ||
999 | f | f | |s f42683f6-1888-4fd6-a5ba-fdaf625761bc |i 3128d910-0ef4-4376-8418-51123eab1184 |t 0 |
952 | f | f | |a Middle Tennessee State University |b Main |c James E. Walker Library |d Electronic Resources |t 0 |e QA76.73.J39 .D38 2018 |h Library of Congress classification |
856 | 4 | 0 | |3 O'Reilly |t 0 |u https://go.oreilly.com/middle-tennessee-state-university/library/view/-/9781617294846/?ar |z CONNECT |