Motion deblurring : algorithms and systems / edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park.

A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms an...

Full description

Bibliographic Details
Other Authors: Rajagopalan, A. N., (Editor), Chellappa, Rama, (Editor)
Format: Book
Language:English
Published: Cambridge : Cambridge University Press, 2014.
Subjects:
Online Access:CONNECT
LEADER 06931nam a22004818i 4500
001 ocm00000001camebacr9781107360181
003 UkCbUP
005 20151019142710.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 130308s2014||||enk o ||1 0|eng|d
020 |a 9781107360181 (ebook) 
020 |z 9781107044364 (hardback) 
020 |z 9781107621497 (paperback) 
040 |a UkCbUP  |b eng  |e rda  |c UkCbUP 
050 0 0 |a TA1637.5  |b .M68 2014 
082 0 0 |a 006.6  |2 23 
099 |a Electronic book 
245 0 0 |a Motion deblurring :  |b algorithms and systems /  |c edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2014. 
300 |a 1 online resource (xiv, 293 pages) :  |b digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015). 
505 0 |a Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur. 
505 0 |a Contents note continued: 13.8. Summary and discussion. 
505 0 |a Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems. 
505 0 |a Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions. 
505 0 |a Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement. 
520 |a A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields. 
650 0 |a Image processing  |x Mathematics. 
650 0 |a Image processing  |x Digital techniques. 
650 0 |a Digital video  |x Editing  |x Mathematics. 
650 0 |a Photography  |x Retouching  |x Data processing. 
650 0 |a Motion  |x Mathematical models. 
700 1 |a Rajagopalan, A. N.,  |e editor. 
700 1 |a Chellappa, Rama,  |e editor. 
730 0 |a Cambridge EBA Collection 
776 0 8 |i Print version:   |z 9781107044364 
856 4 0 |u https://ezproxy.mtsu.edu/login?url=https://doi.org/10.1017/CBO9781107360181  |z CONNECT 
907 |a .b39101460  |b 03-18-19  |c 03-18-19 
998 |a wi  |b 03-18-19  |c m  |d z   |e -  |f eng  |g enk  |h 0  |i 1